Tuning a reinforcement learning algorithm

Martin Zaefferer July 20, 2021

Reinforcement learning ...

Reinforcement learning

... with Neural Networks

Neural Networks in reinforcement learning

- 'Policy': map states to actions
- Can have various shapes and forms
 - Tables, decision trees, ...
- Of special interest here:
 - Artificial neural networks (NN)
 - Weights of the NN are adapted / updated during learning

Influencing performance

- Parameters of the learning algorithm
 - E.g., discount factors, step sizes, initial values, ...
- \cdot Parameters of the NN
 - E.g., number of units, number of layers, learning rates, ...
- Other parameters
 - E.g., agent morphology, environmental parameters
- \cdot Question is:
 - How to set the parameters correctly?
- Answer:
 - Tuning / optimization

Limitations!

Evaluation costs

- \cdot NN training can be costly
 - Thousands or millions of weights to set
- \cdot Evaluating the agent in the environment may also be costly
 - E.g., observing a robot trying to solve a complex task
- \cdot Costs can easily become prohibitive for tuning
- Solution: surrogate model-based optimization

Surrogate model-based optimization

- Surrogate model
 - Learns relation between parameters and performance
- \cdot Evaluate the surrogate model instead of the actual problem

Demonstrative experiment

RL Environment: CartPole

- · Cart balances pole
 - openai gym: CartPole-v0
- States: 4, continuous
 - Cart position & velocity
 - Pole angle & velocity
- Actions: 2, discrete
 - Push cart left
 - Push cart right

RL Environment: CartPole

- Reward:
 - 1 for each time step
- Stop if:
 - Pole angle outside +/- 12 degree
 - Cart position outside +/- 2.4
 - After 200 time steps
- Learning problem solved if:
 - Average reward of 195.

RL Agent: Actor-Critic

- Actor maps states to actions
- Critic learns 'value' of states (via rewards)
- Improve actor to beat critic estimation

Example by Apoorv Nandan, 2020/05/13, https://keras.io/examples/rl/actor_critic_cartpole/

RL Tuning

- Tuned Parameters
 - num_hidden NN units: 8, ..., 128
 - learning_rate of NN (log_{10} scale): -4, ..., 0
 - gamma: Actor-Critic discount factor: 0.5, ..., 1.0
- Surrogate model: Gaussian process
- 2 hours runtime budget
- 5 replications for each parameter configuration

Results: optimization progress

· Best solution [52, -1.873, 0.9] with avg. reward ~181

evaluations

Results: reward ~ num_hidden + learning_rate

Results: reward ~ num_hidden + gamma

Results: parallel plot

Results: reward, mean vs. standard deviation

Open issues

Open issues

- \cdot Use of resources
 - How many replications do we need?
 - How long should we let the agent interact with the environment?
 - Balancing the above (they interact)?
- Multiple goals:
 - Maximize reward
 - Minimize runtime
 - Minimize memory, CPU use (e.g., for edge devices)

Open issues

- Neural architecture search
 - Representations (e.g., blocks / cells, chains, 'unrestricted')
 - Search operators
 - Measuring network similarities / kernels
- Conditional parameter spaces
- High number of hyperparameters
- Transfer learning

Thanks for your attention. Questions?