Estimation of mixture distributions

Martin Zaefferer July 20, 2021

Mixture distributions: why?

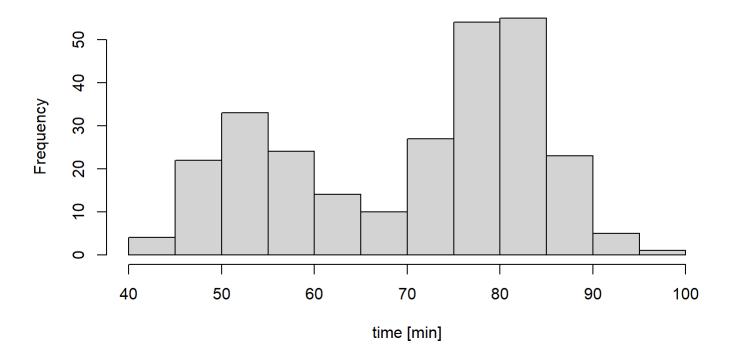
0:00 / 0:30

Old Faithful geyser

Yellowstone National Park (WY, USA), National Park Service, https://www.nps.gov/yell/learn/photosmultimedia/vl_00090mts.htm

Old Faithful: data is multimodal

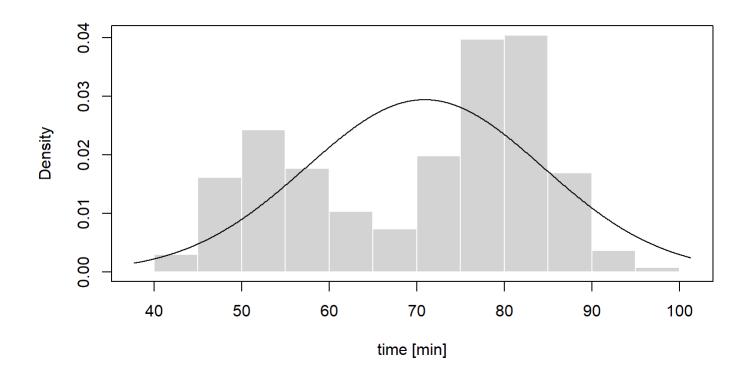
hist(multimode::geyser,main="",xlab="time [min]")



Time between start of eruptions.

Unimodal distribution (Gaussian): poor fit

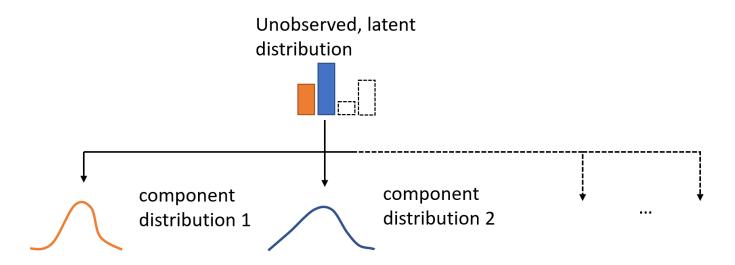
```
require(mclust)
fit <- densityMclust(multimode::geyser,G=1,model="V")
plot(fit, what="density", main="", xlab="time [min]",data=multimode::geyser)</pre>
```



Mixture distributions

Mixture distributions

- Mixture of individual component distributions
- Additional distribution (latent) which 'selects' a component distribution to be sampled from



Example: Gaussian mixture

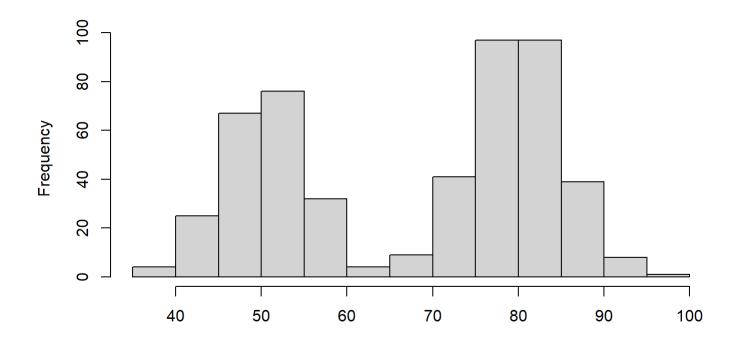
- · Gaussian mixture with k=2 components
- · Latent distribution: $z \sim Multinomial(0.4, 0.6)$
 - Component 1 with probability $\pi_1=0.4$
 - Component 2 with probability $\pi_2=0.6$
- · Component 1: $x|z=1 \sim Gaussian(50,5)$
- · Component 2: $x|z=2 \sim Gaussian(80,5)$

Example: Gaussian mixture

```
z \leftarrow sample(c(1,2),500,prob=c(0.4,0.6),replace=T)

x1 \leftarrow rnorm(sum(z==1),50,5); x2 \leftarrow rnorm(sum(z==2),80,5)

h \leftarrow hist(c(x1,x2),main="",xlab="")
```



Estimation

Parameters

- · Parameters of latent distribution
 - Probabilities π_i
- Parameters of each component distribution
 - Mean μ_i and standard deviation σ_i
- · Parameters $heta=[\pi_1,\pi_2,\mu_1,\mu_2,\sigma_1,\sigma_2]$ need to be estimated!

Estimation: Maximum Likelihood (ML)

- Idea: find parameters for which the data receives the largest likelihood according to model
- Analytical solution
 - Compute derivative of log-likelihoods $\ell(\theta)$
 - Set derivative to zero, solve for heta
- · Turns out to be hard to do
 - E.g., because we do not know z.

What can we do about that?

- Assume that we know from which distribution each sample was drawn
 - I.e., assume to know $z^{(i)}$ for each sample $x^{(i)}$
- MLE becomes straight forward
- · Log-likelihood is:

-
$$\ell(heta) = \sum_{i=1}^m log \ p(x^{(i)}, z^{(i)}; heta)$$

- Compute derivatives, set to zero, solve.

MLE solutions (assuming $z^{(i)}$)

- · Solution for π
 - $\pi_j = 1/m \sum_{i=1}^m I(z^{(i)} = j)$
 - Intuitively:
- · Solution for μ

-
$$\mu_j = rac{\sum_{i=1}^m I(z^{(i)}=j) \ x^{(i)}}{\sum_{i=1}^m I(z^{(i)}=j)}$$

- Intuitively:
- · Solution for σ

$$\sigma_{j}^{2}=rac{\sum_{i=1}^{m}I(z^{(i)}=j)\left(x^{(i)}-\mu_{j}
ight)^{2}}{\sum_{i=1}^{m}I(z^{(i)}=j)}$$

- Intuitively:

MLE solutions (assuming $z^{(i)}$)

- · Solution for π
 - $\pi_j=1/m\sum_{i=1}^m I(z^{(i)}=j)$
 - Intuitively: π_j fraction of samples from component j
- · Solution for μ

-
$$\mu_j = rac{\sum_{i=1}^m I(z^{(i)}=j) \ x^{(i)}}{\sum_{i=1}^m I(z^{(i)}=j)}$$

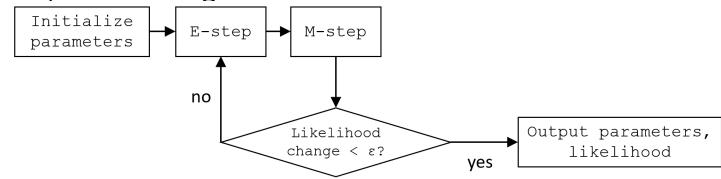
- Intuitively: μ_j mean of samples from component j
- · Solution for σ

$$\sigma_{j}^{2}=rac{\sum_{i=1}^{m}I(z^{(i)}=j)\left(x^{(i)}-\mu_{j}
ight)^{2}}{\sum_{i=1}^{m}I(z^{(i)}=j)}$$

- Intuitively: σ_j variance for component component j

Estimation: Expectation Maximization (EM)

- Attempts to approximate ML estimate iteratively
- Procedure
 - Initialize parameters to some value
 - Alternatingly performs two steps:
 - E-step: Guess $z^{(i)}$ (Expectation!)
 - M-step: Using $z^{(i)}$, maximize likelihoods w.r.t. heta (Maximization!)
 - Stop when change in likelihood below threshold



E-step

· Estimate $z^{(i)}$, or rather the probability of $z^{(i)}=j$

-
$$w_j^{(i)} = p(z^{(i)} = j | x^{(i)}; heta)$$

- Can be derived via Bayes theorem

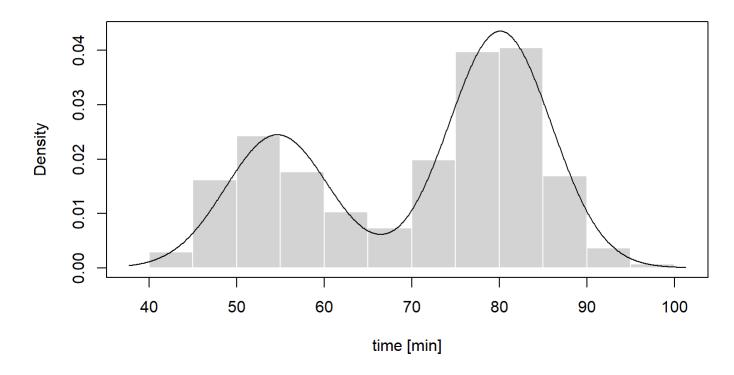
-
$$w_j^{(i)} = rac{p(x^{(i)}|z^{(i)}=j) \ p(z^{(i)}=j)}{\sum_{l=1}^k p(x^{(i)}|z^{(i)}=l) \ p(z^{(i)}=l)}$$

M-step

- With eqs. from slide 15:
 - Replace $I(z^{(i)}=j)$ with $w_j^{(i)}$
 - Because: $w_j^{(i)} = \mathbb{E}[I(z^{(i)} = j)]$
 - Compute heta

Back to Old Faithful: apply EM to data

```
require(mclust)
fit <- densityMclust(multimode::geyser,G=2,model="V")
plot(fit, what="density", main="", xlab="time [min]",data=multimode::geyser)</pre>
```

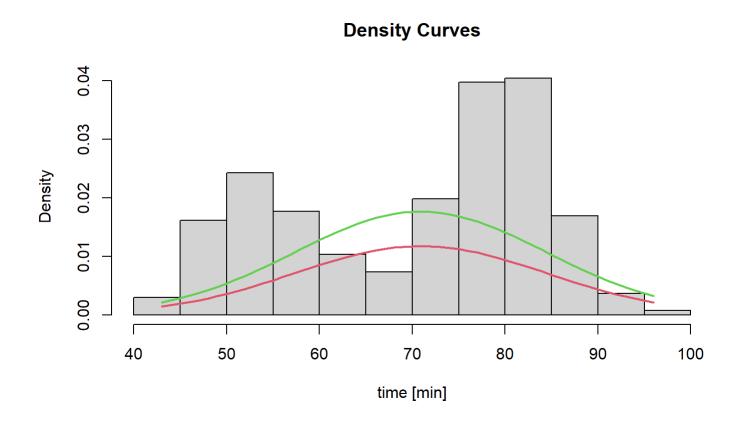


Gaussian mixture density for Old Faithful.

Remaining difficulties

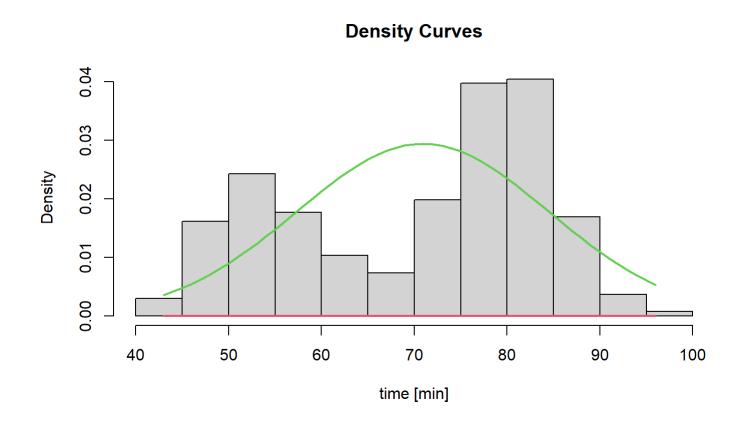
Issue: identical initial guess (μ, σ)

```
require(mixtools)
fit <- normalmixEM(multimode::geyser, k=2, mu=c(50,50), sigma=c(10,10), lambda=c(0.4,0.6))
plot(fit, which=2, xlab2="time [min]")</pre>
```



Issue: isolated initial guess

```
fit <- normalmixEM(multimode::geyser, k=2, mu=c(-100, 50), sigma=c(10, 10), lambda=c(0.5, 0.5))
plot(fit, which=2, xlab2="time [min]")</pre>
```



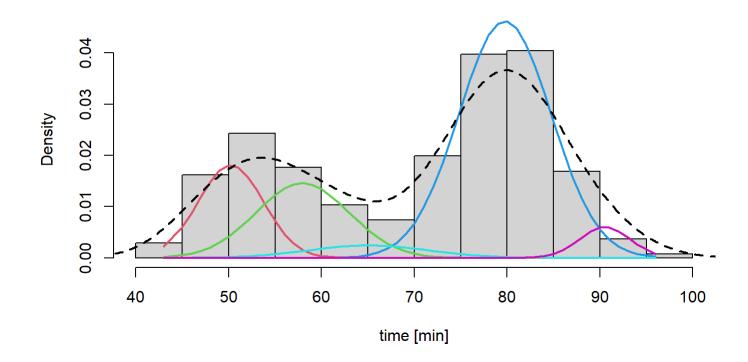
Initial guesses

- · Reasonable choice:
 - Set each μ to a different, randomly selected sample value
 - Set all σ to global standard deviation (of all samples)
 - Set probabilities $\pi_i=1/k$
- · Alternative: guess parameters with other algorithm, e.g., k-means
- If results are unsatisfactory, do a restart

Issue: specify k

```
fit <- normalmixEM(multimode::geyser, k=5)
plot(fit, which=2, xlab2="time [min]")
lines(density(fit$x), lwd=2, lty=2)</pre>
```

Density Curves



Specify k

- Sometimes k may be known
 - From expert knowledge
 - Or visual inspection
 - Or user 'needs' a specific value $oldsymbol{k}$
- Else: treat as hyperparameter
 - Select k that optimizes a criterion, e.g., AIC

See: presentation by Andrew Ng, 2020 (stanfordonline)

https://youtu.be/rVfZHWTwXSA

Thanks for your attention. Questions?