Estimation of mixture
distributions

Martin Zaefferer
July 20, 2021



Mixture distributions: why?



0:00/0:30

Old Faithful geyser

Yellowstone National Park (WY, USA), National Park Service, https://www.nps.gov/yell/learn/photosmultimedia/vl_00090mts.htm
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Old Faithful: data is multimodal

hist (multimode: :geyser,main="",xlab="time [min]")
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Unimodal distribution (Gaussian): poor fit

require (mclust)
fit <- densityMclust (multimode: :geyser,G=1,model="V")
plot (fit, what="density", main="", xlab="time [min]",data=multimode: :geyser)
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Mixture distributions



Mixture distributions

Mixture of individual component distributions

- Additional distribution (latent) which ‘selects’ a component distribution to be
sampled from

Unobserved, latent
distribution
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Example: Gaussian mixture

* Gaussian mixture with k = 2 components

+ Latent distribution: z ~ Multinomial(0.4, 0.6)
- Component 1 with probability m; = 0.4
- Component 2 with probability m9 = 0.6

- Component 1: |z = 1 ~ Gaussian(50, 5)

+ Component 2: x|z = 2 ~ Gaussian(80,5)
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Example: Gaussian mixture

z <- sample(c(1l,2),500,prob=c(0.4,0.6), replace=T)
x1 <- rnorm(sum(z==1),50,5); x2 <- rnorm(sum(z==2),80,5)

h <- hist(c(xl,x2),main="",xlab="")
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Estimation



Parameters

Parameters of latent distribution
- Probabilities r;
Parameters of each component distribution

- Mean u; and standard deviation o;

Parameters 6 = |71, T, U1, 42, 01, 02] need to be estimated!
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Estimation: Maximum Likelihood (ML)

- ldea: find parameters for which the data receives the largest likelihood
according to model

- Analytical solution
- Compute derivative of log-likelihoods £(8)

- Set derivative to zero, solve for 6

+ Turns out to be hard to do
- E.g., because we do not know z.
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What can we do about that?

+ Assume that we know from which distribution each sample was drawn
- |.e., assume to know 29 for each sample (%)

-+ MLE becomes straight forward

- Log-likelihood is:
- 0(6) = 7 log p(2®), 2); )

- Compute derivatives, set to zero, solve.
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MLE solutions (assuming 2(9) )

* Solution for
- =1/mY ", I(z2% = j)
- Intuitively:

* Solution for

) o Xin I(z%)=3)
Hi = S I(z(0=y)

- Intuitively:
* Solution for o

ol = Sy 1(z0=5) (2 —p;)’
g S 1(20 =)

- Intuitively:
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MLE solutions (assuming 2(9) )

* Solution for
— ]'/m Zz 1 ( — -7)
- Intumvely: ; fraction of samples from component 7

* Solution for

_ o ZL I(z(i):j) (%)
Hi = =5 1:0=))

- Intuitively: ;t; mean of samples from component 7

+ Solution for o

P ity 1(z0=4) (20 —p;)*
J ity 1(z00=5)

- Intuitively: o variance for component component j
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Estimation: Expectation Maximization (EM)

+ Attempts to approximate ML estimate iteratively

- Procedure

- Initialize parameters to some value

- Alternatingly performs two steps:

- E-step: Guess 20 (Expectation!)

- M-step: Using 21 maximize likelihoods w.r.t. (Maximization!)

- Stop when change in likelihood below threshold

Initialize
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E-step

- Estimate z(®), or rather the probability of PO 7
“w)) = p(zl) = j|2;0)
- Can be derived via Bayes theorem

- (@) p9z%=)) p(z0=j)
wy = o = .
J El:l p(;(;(z) |z(l) :l) p(z(l) :l)
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M-step

- With egs. from slide 15:
- Replace I(z®) = j) with wgi)
" Because: wgz) = E[I(z% = j)]

- Compute 6
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Back to Old Faithful: apply EM to data

require (mclust)
fit <- densityMclust (multimode: :geyser, G=2,model="V")
plot (fit, what="density", main="", xlab="time [min]",data=multimode: :geyser)
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Gaussian mixture density for Old Faithful.
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Remaining difficulties



Issue: identical initial guess (i, o)

require (mixtools)
fit <- normalmixEM (multimode: :geyser, k=2, mu=c (50, 50),sigma=c(10,10), lambda=c(0.4,0.6))
plot (fit,which=2,xlab2="time [min]")
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Issue: isolated initial guess

fit <- normalmixEM (multimode: :geyser, k=2, mu=c (-100,50),sigma=c(10,10), lambda=c(0.5,0.5))
plot (fit,which=2,xlab2="time [min]")
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Initial guesses

- Reasonable choice;

- Set each u to a different, randomly selected sample value
- Set all o to global standard deviation (of all samples)
- Set probabilities m; = 1/k
- Alternative: guess parameters with other algorithm, e.g., k-means

- If results are unsatisfactory, do a restart
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Issue: specify k

fit <- normalmixEM (multimode: :geyser, k=5)
plot (fit,which=2,xlab2="time [min]")
lines (density (fit$x), lwd=2, 1ty=2)
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Specify k

* Sometimes k may be known

- From expert knowledge

- Orvisual inspection
- Or user ‘needs’ a specific value k
Else: treat as hyperparameter

- Select k that optimizes a criterion, e.g., AIC
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See: presentation by Andrew Ng, 2020 (stanfordonline)

https://youtu.be/rVfZHWTwXSA

Thanks for your attention.
Questions?


https://youtu.be/rVfZHWTwXSA
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