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Overview
• Presented work is based on a collaboration with Daniel Gaida and Thomas
Bartz-Beielstein [Zaefferer et al., 2016]
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Problem: Feed Mixture Optimization

• Goal: maximize monetary gain of biogas plants
• Gain depends on feed mixture

max
x∈X

y = f(x),

• y: gain
• x: feed mixture
• X ⊆ R+n: Search space, respecting bounds on availability of material
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Problem: Feed Mixture Optimization

• Slow biochemical processes
• Direct optimization infeasible
• Need for simulation models, e.g.:

• Computational Fluid Dynamics (CFD)
• Anaerobic Digestion Model No1 (ADM1) [Batstone et al., 2002]
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Surrogate Model-Based-Optimization

• Simulation still time consuming
• Need for data-driven surrogate models
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Surrogate Model-Based-Optimization

Surrogate Model-Based-Optimization

• Algorithm
1 Initial design X = {x1, ...xn}
2 Evaluate with simulation (here: ADM1) yi = ff (xi)
3 Train data-driven surrogate model with X and y, yielding f̂f (x)
4 Optimize surrogate xn+1 = maxxf̂f (x)

• Repeat 2-4 until budget exhausted
• Model: Kriging / Gaussian process regression [Forrester et al., 2008]
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Integration of Expert Knowledge

Available expert knowledge
• Not a pure-black box problem
• Coarse grained guess: biomass potential (BMP)

• Cheap to compute
• But inaccurate

• Also: knowledge about gain changes, e.g., manure bonus
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Integration of Expert Knowledge

Use of expert knowledge

• i) Improve initial design: include optimum of BMP model fc(x)
• ii) Improve surrogate model of ADM1 ff (x) via BMP model fc(x)
• iii) Improve surrogate model: avoid discontinuities (manure bonus)
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Integration of Expert Knowledge

Multi-fidelity approaches

• Model the differences between the coarse BMP and the fine ADM1 function
f̂f (x) = f̂diff (x) + fc(x)

• Use the BMP model output as an input to the surrogate model
f̂f (x) = f̂input(x, fc(x))

• Model correlation between BMP and ADM1 explicitly via multi-output
Gaussian processes / co-Kriging [Forrester et al., 2007]

f̂f (x) = µ̂+ cT C−1(y − 1µ̂),

• C: Matrix of covariances of the training data (coarse-coarse, fine-coarse,
fine-fine)

• c: vector of covariances of new sample x and training data (coarse and fine)
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Integration of Expert Knowledge

Avoiding discontinuity
• Problem: discontinuity in the target function landscape
• May deteriorate Kriging model
• Location and reason of discontinuity is known a priori: manure bonus
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• Solution: train two models, with and without manure bonus. Switch between
them.
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Case Study: Model Quality

Setup:

• 2D case: mixture of pig manure and maize
• 5, 10, 15 and 20 evaluations of the ADM1 / fine model
• 100 evaluations of the BMP / coarse model
• Latin hypercube sampling (LHS)
• Error measure: SMSE [Keijzer, 2004]
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Case Study: Model Quality
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Case Study: Optimization Performance

Setup:

• 2D: pig manure and maize
• 5D: pig manure, maize, grass, corncob, cow manure
• Models:

• 2-layer Kriging
• 2-layer co-Kriging

• Initial design (fine): 3 x dimension
• Initial design (coarse): 50 x dimension
• Budget: 5 x dimension
• Surrogate budget: 500 x dimension
• Simulation failure: penalty / imputation
• Initialization: LHS with or without BMP optimum
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Case Study: Optimization Performance

Optimization Results
• 2D case, after 10 evaluations
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• 5D case, after 25 evaluations
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Case Study: Optimization Performance

Optimization Results

method dim gain [eur/d] gross time [s] net time [s] failures
Simplex (ran) 2 1554 898.24 0.37 1
Simplex (BMP) 2 1751 1451.61 0.41 0
LHS (BMP) 2 1553 975.49 0.32 1
Kriging (ran) 2 1702 909.30 10.68 2
Kriging (BMP) 2 1755 895.94 10.66 0
Co-Krig. (ran) 2 1757 861.50 15.20 2
Co-Krig. (BMP) 2 1760 805.76 15.08 0
Simplex (ran) 5 1760 2779.87 0.92 7
Simplex (BMP) 5 1958 1594.88 0.98 0
LHS (BMP) 5 1620 3156.73 0.88 0
Kriging (ran) 5 1808 2763.89 53.16 2
Kriging (BMP) 5 1963 2615.60 53.51 4
Co-Krig. (ran) 5 1917 2980.53 293.60 4
Co-Krig. (BMP) 5 1968 2877.09 288.97 1
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Summary and Outlook

Summary

• Pros:
• Two-layer model approach improves accuracy
• Multi-fidelity information improves accuracy and performance
• BMP initialization improves performance

• Cons:
• Co-Kriging: computational cost may impede benefits
• Comparison to (deterministic) downhill simplex problematic
• Generalization?
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Summary and Outlook

Open Issues

• Integration in online control (dynamic optimization)
• Larger set of test cases
• More accurate/expensive models, e.g., CFD-based
• Additional objectives or constraints
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Summary and Outlook

Thanks for Listening

• Questions?
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Overall best solutions found

2D 5D

gain [e/ d] 1,770 1,987
maize [m3/d] 22.85 5.22

pig manure [m3/d] 11.85 11.48
grass silage [m3/d] 0 18.98

corn-cob-mix [m3/d] 0 0.01
cow manure [m3/d] 0 0.08

manure bonus yes yes
ammonia digester [mg/l] 163.4 216.6

ammonia post-digester [mg/l] 291.0 464.2
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Scaled MSE

SMSE(y, ŷ) = MSE(y,1a+ bŷ) =

= 1
n

n∑
i=1

(yi − (a+ bŷi))2

where b = cov(y, ŷ)
var(ŷ) and a = ¯̂y − bȳ
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