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Chapter 1

Introduction

In real-world optimization, it is often expensive to evaluate the quality of a candidate
solution. The costs may be due to run-time of a complex computer simulation, time
required for a laboratory experiment, expensive material for building a prototype, or
cost of operator work hours. In these cases, it is desirable to evaluate as few candidate
solutions as possible.
Surrogate Model-Based Optimization (SMBO) techniques try to achieve this by shift-
ing the evaluation load from the expensive experiment to a surrogate model. This
model is expected to be a cheap-to-compute abstraction of the real-world problem.

1.1 Incentive
Surrogate modeling has been firmly established in the field of continuous optimization
with real-valued parameters [136, 257, 232, 137, 26]. Nevertheless, many optimiza-
tion problems are not continuous. Rather, search spaces are often spanned by discrete
variables or are based on complex structures such as graphs. In fact, one of the first ex-
periments with evolution strategies dealt with an expensive and discrete optimization
problem: Schwefel’s optimization of a two-phase jet nozzle [225, 149]. Here, the ex-
perimental restrictions imposed a discrete search space: 239 available nozzle segments
could be combined to form different nozzle shapes [225].
More recent application examples can be found in the fields of mechanical engineer-
ing [254, 11, 231, 42, 244, 245], aerospace engineering [131], chemical engineer-
ing [104, 118, 108], bioinformatics [71, 212], operations research [85, 121, 191, 192,
190, 174] or data science [235] and algorithm tuning [126, 128, 34, 33, 241, 246, 80,
125, 38, 198, 72, 161]. In these problem domains, combinatorial data structures (e.g.,
categorical variables, sequences, strings, or graphs) have to be optimized, and the eval-
uation procedures are often very expensive.
Many of these examples are quite recent developments; others are not relying on sur-
rogate models at all. Several works in recent years suggested that this field has not
been investigated in depth and poses a challenge to SMBO algorithms [257, 232, 179,
137, 9, 110]. So what is the reason for this, and what is really missing? Clearly, a large
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variety of model-free optimization techniques for black-box problems is readily avail-
able, e.g., evolutionary algorithms or other metaheuristic optimization algorithms [43].
It seems that we lack suitable surrogate models to apply techniques like evolution-
ary algorithms to expensive, discrete problems. Moreover, the interdisciplinary nature
of this research field (engineering applications, combinatorial optimization, machine
learning, evolutionary computing) causes additional complications in practice.
It is the aim of this work to fill this void. Based on the state of the art in surrogate
modeling, we attempt to establish the missing links in combinatorial, discrete, and
mixed variable SMBO. We focus on developing or improving suitable models.

1.2 Objective
The main objective of this thesis is to develop methods for solving the optimization
problem

min
x∈X

f(x),

where X is a nonempty set (the search space). An element x of that set represents a
candidate solution of the optimization problem. The objective function f(x) is usually
assumed to be expensive (with respect to money, time or material resources) and a
black-box. Here, the term “black-box” implies that knowledge about the objective
function f(x) can only be obtained by evaluating it, no further prior knowledge is
available. At the same time, the cost of the overall optimization procedure is dominated
by the number of evaluations of f(x). This causes the main complexity of this problem
type: the black-box nature of the problem necessitates a certain amount of function
evaluations, yet the cost of these evaluations imposes a strict limit on their number.
This motivates the use of surrogate models.
An important premise for this thesis is the nature of the solutions x. Surrogate model-
ing is well-established for x ∈ Rm, wherem indicates the dimensionality of the search
space, that is, the number of real-valued parameters. We aim for a more general case,
where x is allowed to have a more complex structure. Most importantly, it may be of
a combinatorial or discrete nature, e.g., permutations, strings, graphs, or mixtures of
representations. In this case, relatively few approaches have been investigated in the
literature. There is only one restriction required for most of the methods described in
this thesis. A kernel function k(x, x′) has to be available, which comprehends some
measure of similarity or distance. This implies that k(x, x′) can be computed for any
x, x′ ∈ X .
If such a kernel is available, the methods developed in this thesis are applicable to
any kind of continuous, mixed, discrete, or combinatorial solution representation. In
particular, this thesis deals with the following solution representations:

• Continuous variables are used in various illustrative examples, and are consid-
ered in Chapter 2.

• Permutations are used as a frequent test case in Chapters 5 to 8.
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• Binary variables are used in experiments in Chapter 5.

• Strings are briefly considered in Section 7.4.4.

• Tree structures are considered in Section 9.1, in the context of genetic program-
ming and symbolic regression.

• Graphs that encode hierarchical dependencies of variables are considered in Sec-
tion 9.2.

• Categorical variables are considered in an application in Section 9.3.

1.3 Synopsis
A graphical overview of this thesis is given in Fig. 1.1. In the following, we extend
this overview with more details.
Firstly, we provide the required background on black-box optimization methods and
surrogate modeling in Chapter 2. This initial overview mostly deals with methods from
the continuous domain. Chapter 3 extends this with an overview of surrogate models
in the discrete domain. This provides a review of the state of the art, to give a clear
indication of what other approaches exist. Our further work heavily relies on kernels,
which are discussed in Chapter 4.
Based on the introduced background, Chapter 5 deals with the core methods of this
thesis: a Kriging model for discrete search spaces based on appropriate distances or
kernels. Kriging is a frequently used surrogate model for continuous problems that re-
gresses or interpolates data based on measures of correlation, or kernel functions [93].

need models
for discrete

search spaces
(Chapter 1)

existing methods?
what is promising?
(Chapters 2 to 4)

approach:
kernel-based,

Kriging
(Chapter 5)

what kernels
to use?

multi-kernel:
select and
combine

(Chapter 6)

check if
definite, how?

(Chapter 7)

correction
methods

(Chapter 8)

applications
and extensions

(Chapter 9)

trees, symbolic
regression

hierarchical
search spaces

simulation-
based testing

no

yes

Figure 1.1: A brief overview of this thesis, following the main lines of the investigation.
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The intuitive idea is to change the underlying kernel, thus adapting Kriging to the dis-
crete data types investigated in this thesis. The rationale behind this is explained, and
a first set of experiments is investigated as a proof of concept.
As the experiments show, it is not always clear which kernel to use for a specific ap-
plication. Hence, we investigate methods that select or combine kernels in Chapter 6.
These multi-kernel methods mostly employ the following concepts: linear relation-
ships between kernels and observations, likelihoods, and cross-validation. Our results
indicate that it is crucial to employ multi-kernel methods, to avoid poor algorithm per-
formance.
However, not every kernel fulfills the requirements of the modeling techniques. Im-
portantly, kernels are expected to be definite. An indefinite kernel may deteriorate the
accuracy of the model. Even worse, an indefinite kernel may sometimes produce no
feasible model at all. Hence, it is important to know whether a kernel is definite. In
Chapter 7, we propose a novel, empirical approach to that end. A search procedure
either tries to find indefinite cases by random sampling or by optimizing a critical
eigenvalue.
Once a kernel is determined to be indefinite, appropriate counter-measures have to be
taken to avoid performance losses. Chapter 8 demonstrates how Kriging models can be
enabled to deal with indefinite kernels. Most importantly, transformations of the eigen-
spectrum are employed to correct definiteness. This idea is borrowed from the field of
support vector learning. Additionally, we suggest further correction approaches and
condition repair methods that allow transplanting these approaches to Kriging models.
Finally, in Chapter 9, we explore whether our methods are able to handle problems
that are more complex. A tree-based symbolic regression task and hierarchical search
spaces are investigated. Importantly, this is extended by a discussion of algorithm
benchmarking. We propose a test function generator based on a data-driven Kriging
simulation. This generator produces diverse test functions, which are able to reflect the
behavior of real-world problems.
This work is finalized in Chapter 10, by giving an overall summary, providing some
advice for practitioners and outlining future research directions.
To supplement these considerations, the appendix collects further odds-and-ends, in-
cluding tools for the statistical analysis of results (Appendix A), a description of spe-
cific kernels employed in the thesis (Appendix B), a description of the employed vari-
ation operators (Appendix C), and additional figures (Appendix D).

1.4 Publications

Significant parts of this work are based on material that has previously been published
or is being prepared for publication during the writing of this thesis. Of significance
are the following documents: [273, 271, 264, 26, 266, 268, 270, 272].
All these works have been extended, rewritten, and restructured in some form before
their inclusion into this thesis. The rewriting and restructuring were mostly aimed to
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increase the clarity, to unify notation and terminology, and put the described contri-
butions in the overall context of this thesis. In most cases, this includes a revision or
extension of the experiments. In the following, the changes are briefly outlined.
If not otherwise specified, these publications are in large parts a contribution of the
author of this thesis. This is not intended to underrate the contributions of the co-
authors, who provided inspiration to some of the presented ideas, helped to improve
the writing quality, and gave support for the experimental procedures and analysis of
these studies. In the following, we discuss each publication. For the sake of clarity,
these remarks are repeated at the start of the respective sections or chapters.
Chapter 3 is partly based on the article “Model-based Methods for Continuous and
Discrete Global Optimization” by Bartz-Beielstein and Zaefferer [26]. This includes
many text elements that are taken verbatim from that publication. In the article, the
discussion of continuous optimization methods was mostly contributed by Thomas
Bartz-Beielstein. The part that is relevant to this chapter was mostly contributed by
the author of this thesis. The survey was rewritten, restructured, and expanded. To a
lesser extent, a few considerations have been taken from the article “Efficient Global
Optimization for Combinatorial Problems” by Zaefferer et al. [273].
In less detail, some of the terms and definitions from Chapter 4 have already been
discussed in Section 2 of “An Empirical Approach for Probing the Definiteness of
Kernels” by Zaefferer et al. [266]. Hence, there is some overlap with that section. We
added more details, including an illustrative motivation of the kernel trick.
Chapter 5 is partially based on the article “Efficient Global Optimization for Combi-
natorial Problems” by Zaefferer et al. [273]. Occasionally, text elements have been
adopted verbatim from that publication. Overall, the text was significantly rewritten
and extended before its inclusion into this thesis. We also added an illustrative exam-
ple. The described experiments were repeated in a more thorough way. This included
a more flexible, self-adaptive evolutionary algorithm, a broader set of test functions,
and a parameter sensitivity study.
Chapter 6 is based on the article “Distance Measures for Permutations in Combinato-
rial Efficient Global Optimization” by Zaefferer et al. [271], with similar extensions as
in Chapter 5. Some text elements have been adopted verbatim from the original con-
tribution. The content of the publication been extended significantly. Firstly, several
additional methods for dealing with multiple kernels are discussed, including a more
comprehensive explanation of the original ideas. Secondly, a more thorough experi-
mental study now includes these methods as well as additional distance measures and
test functions. Furthermore, the results are subject to a more in-depth analysis.
Chapter 7 is based on the article “An Empirical Approach for Probing the Definiteness
of Kernels” by Zaefferer et al. [266]. The material was revised to embed it into the
context, notation, and structure of this thesis. Otherwise, a majority of the text has
been adopted verbatim from the original document. The experiments and analysis
were not changed.
Chapter 8 is based on the article “Efficient Global Optimization with Indefinite Ker-
nels” by Zaefferer et al. [264]. It has been extended and rewritten. Some parts are
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taken verbatim from the original publication. An illustration with a one-dimensional
example was added. Further, the experimental setup was extended to deal with test
problems that are more varied and of a higher dimension. Correspondingly, the ex-
perimental analysis had to be adapted. The remarks on non-stationarity are also not
part of the original article. Finally, some additional repair methods based on a linear
combination and a nearest-neighbor approach were added.
Chapter 9 is largely based on three publications [272, 270, 268].
Section 9.1 is based on the article “Linear Combination of Distance Measures for Sur-
rogate Models in Genetic Programming” by Zaefferer et al. [272]. Especially in the
problem description, the description of the distances, and the experimental setup, ma-
jor parts were taken verbatim from the original article. Otherwise, the text was revised
and the description of the distances and the analysis were supplemented with a dis-
cussion of definiteness. This includes additional experimental results with definiteness
correction methods. The analysis was extended, especially with visualizations.
Section 9.2 is based on the article “A First Analysis of Kernels for Kriging-based Opti-
mization in Hierarchical Search Spaces” by Zaefferer and Horn [270]. It was prepared
in a coequal cooperation with Daniel Horn, who especially contributed to the statistical
and visual analysis of the experimental investigation. Since this article was written in
equal parts by both of its authors, it is not discussed entirely. We discuss the kernels
contributed by the author of this thesis in more detail (with few verbatim adoptions)
and briefly summarize the experimental results. An additional kernel (Wedge-kernel)
is proposed.
Section 9.3 is mostly based on “Simulation Based Test Functions for Optimization Al-
gorithms” by Zaefferer et al. [268]. The text is in parts taken verbatim from that pub-
lication. However, it was largely rewritten and extended to 1) give a clearer motivation
supported by visualizations, 2) add some additional remarks on related approaches, 3)
discuss the advantages and disadvantages in a more structured way, 4) provide more
illustrative examples to explain how the test function generator works, and 5) show
results from an additional experiment with a random forest model.
In addition to these main chapters, a few excerpts regarding the description of kernels,
distances, and variation operators described in the appendix are taken from already
mentioned publications [273, 271, 264, 266].
Finally, the author of this thesis was involved in several research projects and studies
that are not directly related to the core issues that are discussed here. Hence, they are
not included in these deliberations. In particular, some of these publications discussed
interesting applications of SMBO algorithms in fields like process optimization [269],
algorithm tuning [265, 267], and mechanical engineering [143, 27]. While none of
these applications considered discrete or combinatorial problems, they provided an
initial motivation and foundation for this work.
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Part I

Background and State of the Art
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Chapter 2

Continuous Methods for Expensive
Black-box Optimization

The modeling and optimization methods developed in this thesis are based on estab-
lished techniques in the field of vector-valued, continuous optimization. The founda-
tions of methods for expensive, black-box optimization problems are introduced in the
following. In this chapter, a candidate solution x is considered to be an m-dimensional
real-valued vector in the search space X ⊆ Rm, and f(x) is a continuous, expensive,
black-box function.

2.1 Evolutionary Algorithms

One prominent class of solvers for black-box optimization problems are Evolutionary
Algorithms (EAs) [226, 208, 13, 82, 23]. These algorithms transfer the concept of
natural evolution to numerical optimization. EAs combine selection, mutation, and re-
combination of candidate solutions iteratively, as outlined in Algorithm 1 and Fig. 2.1.

The following list summarizes some of the most important aspects of an EA.

• Candidate solutions x ∈ X are called individuals.

• A population X ⊂ X is a set of individuals.

• The objective function f(x) is called the fitness function. The output of that
function is the fitness of an individual x.

• A recombination operator is a function that creates one or more offspring (new
individuals, denoted X ′ in Algorithm 1), using information of two or more par-
ents (old individuals). For instance, two parents x(1), x(2) can be recombined
by taking the average in each dimension: x′ = (x(1) + x(2))/2. This particular
example is called intermediate crossover.
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Figure 2.1: A simplified schema of how an evolutionary algorithm evolves better solutions.

• Mutation operators induce slight changes in offspring. For example, a normally
distributed error is added to an individual x′ = x′ + z, where z is a vector of
independent samples from the normal distribution, i.e., zi ∼ N(µ, σ2), with µ =
0. Here, N(µ, σ2) denotes the normal distribution with mean µ, and variance σ2.
In this context, σ2 is also called the step-size, step-length, or mutation strength.

• A selection mechanism is required to select which of the individuals in a popula-
tion are chosen as parents (parent selection). Furthermore, a subset of the parent
population and the offspring needs to be selected for the next iteration (survivor
selection). The selection process usually depends on the fitness (or fitness ranks).

One important aspect of EAs is the configuration of their parameters, e.g.,

• the population size npop (the size of the set X),

• the number of generated offspring noff (the size of the set X ′),

• the choice of mutation operator (Line 11 of Algorithm 1),

• the choice of recombination operator (Line 10 of Algorithm 1),

• the choice of selection operators (Lines 9 and 19 of Algorithm 1), and

• parameters of the operators (e.g., step-sizes or selection probabilities).

All these parameters can influence the performance of an EA. A good configuration
may be critical to the success of the algorithm. This implies a meta-optimization prob-
lem: the optimization of the algorithm’s performance. Optimal values depend not
only on the algorithm but also on the problem. For example, highly multimodal prob-
lems may require a larger population size, whereas a small population size is more
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Algorithm 1 Evolutionary algorithm.

1: function EA(f(x), init(), select() mutate(), recombine(),
terminate())

2: X =init(); . create initial population with X ⊂ X
3: n = |X|; . size of the population
4: for j = 1 to n do
5: yj = f(x(j)); . evaluate fitness of each individual
6: end for
7: y =

[
y1 . . . yn

]T;
8: while not terminate() do
9: Xparent = select (X,y); . parent selection

10: X ′ = recombine (Xparent); . recombination
11: X ′ = mutate (X ′); . mutation
12: n = |X ′|;
13: for j = 1 to n do
14: y′j = f(x′j); . evaluate fitness of offspring
15: end for
16: y′ =

[
y′1 . . . y′n

]T;
17: X = X ∪X ′; . add offspring to population

18: y =

[
y
y′

]
;

19: X,y = select (X,y); . survival selection
20: end while
21: end function

efficient for a unimodal problem. Therefore, to understand and improve an EA’s per-
formance, its parameters have to be considered. In this context, we will call them
meta-parameters. Two approaches are important in that respect.
Firstly, parameter tuning can solve this meta-optimization problem via some optimiza-
tion algorithm. This algorithm can itself be an EA, or some more sophisticated method,
such as sequential parameter optimization [24, 20]. Tuning not only improves results,
but also enables a fair comparison between the tuned algorithms.
The second approach is parameter control [227, 81]. This includes a process into the al-
gorithm that adapts the algorithm parameters during its runtime. One classical example
is the so-called one-fifth rule suggested by Rechenberg [208]. This rule was devised for
the step-size adaptation of the (1+1)-Evolution Strategy (ES) on two unimodal fitness
functions. The (1+1)-ES operates with a single parent and a single offspring. The rule
states that the step-size should be increased if more than one trial in five iterations yield
a better fitness, and it should be decreased if fewer improvements are observed. An-
other parameter control approach is self-adaptation. The term self-adaptation implies
that the algorithm parameters are attached to the parameters x of the objective func-
tion [81]. That means, x∗ =

[
x xmeta

]
, where xmeta are meta-parameters of the EA (or
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more specifically, all parameters controlled by self-adaptation), x are the parameters of
the underlying fitness function, and x∗ is their concatenation. Consequently, some of
the EA’s parameters may vary between different individuals. By processing x∗ instead
of just x, the EA can search for the optimum of the fitness function and the solution of
the meta-optimization problem simultaneously.
Parameter control is not without problems and may still require tuning. Firstly, it has
been shown that self-adaptation may lead to premature convergence [217]. Secondly,
most adaption schemes introduce new parameters, such as learning rates. We refer to
these parameters as learning parameters. Still, it is usually argued (but not necessarily
guaranteed) that algorithms should be less sensitive to learning parameters [81].
For example, Algorithm 2 represents a self-adaptation scheme that is used in this the-
sis. This self-adaptation process is applied to the parent individuals, before an offspring
is created by recombination and mutation. Therefore, the process is placed between
Lines 9 and 10 of Algorithm 1. For the adaptation of real-valued meta-parameters, we
use an approach similar to that in the mixed-integer ES (MIES) [84, 163]. In addition
to the MIES, we also consider categorical meta-parameters, e.g., the choice of variation
operators. To that end, we use a rather simple concept: If offspring are generated by
recombination, the categorical meta-parameter is chosen randomly from each parent.
This is also called dominant crossover. Afterwards, mutation may change a categor-
ical meta-parameter with probability ps. If a mutation is triggered, the adaptation is
performed via a uniform random sample from all values (except for the current value).

Algorithm 2 Self-adaptation of an EA’s meta-parameters, placed between Lines 9
and 10 of Algorithm 1.

1: function SELF-ADAPT(parent population X∗ and learning parameters τ , ps)
2: for all x∗ ∈ X∗ do
3: for all real-valued xmeta ∈ x∗ do . e.g., mutation rate
4: recombine: intermediate crossover;
5: mutate: xmeta = xmeta exp(τz) with z ∼ N(0, 1);
6: end for
7: for all categorical xmeta ∈ x∗ do . e.g., variation operators
8: recombine: dominant crossover; . choose randomly from parents
9: mutate: uniform random sample, with probability ps;

10: end for
11: end for
12: return X∗

13: end function

In Algorithm 2, the learning rate τ and the probability ps are new learning parame-
ters introduced by the self-adaptation scheme. Here, these parameters are defined as
scalars, but they can as well be specified as vectors to encode different rates or proba-
bilities for each of the controlled meta-parameters.
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Overall, EAs have several advantages that make them a promising choice for the black-
box problems considered in this thesis:

• EAs require no additional information about the search space, such as gradients.

• Due to their population-based, stochastic nature, EAs have the potential to es-
cape local optima.

• EAs can be easily adapted to different data structures, and are in fact widely used
in continuous as well as discrete optimization.

• Although a well-performing EA may require significant parameter tuning effort,
little domain knowledge is required for the general setup of an EA.

However, EAs have a crucial feature that puts them at odds with one main constraint
of the problems considered in this thesis. EAs require many fitness evaluations, which
are often expensive to evaluate in case of real world optimization problems. Hence,
we need tools for the efficient optimization of expensive, discrete problems with EAs.
In the remainder of this thesis, we focus on surrogate model-based optimization tech-
niques that provide sophisticated tools for solving these problems.

2.2 Surrogate Model-based Optimization
Algorithm 3 defines a typical SMBO algorithm. A simplified schema of this algo-
rithm is depicted in Fig. 2.2. Similar algorithms are used throughout this thesis. In
the SMBO algorithm, f(x) is the expensive objective function, init() generates an
experimental design (a set of initial candidate solutions), model() is a function that
trains data-driven surrogate models, optimizer() is an optimization algorithm that
optimizes the model based on some infill criterion, and terminate() checks
whether the algorithm should stop (e.g., based on a budget of evaluations of f ).

update 
training data

stop if goal 
reached

evaluate

optimize 
model

train
model

evaluate
initial 

solutions

Figure 2.2: A simplified schema of how an SMBO algorithm searches for better solutions.
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Algorithm 3 A typical SMBO algorithm

1: function SMBO(f(x), init(), model(), optimizer(), infill,
terminate())

2: X =init(); . create initial design with X ⊂ X
3: n = |X|;
4: for j = 1 to n do
5: yj = f(x(j)); . evaluate design
6: end for
7: y =

[
y1 . . . yn

]T;
8: while not terminate() do
9: M = model (X,y); . create / update the model

10: x′ = optimizer(M ,infill); . determine promising candidate
11: y′ = f(x′); . evaluate candidate
12: X = X ∪ {x′}; . add candidate to data set

13: y =

[
y
y′

]
; . add objective function value of candidate

14: end while
15: end function

The init() algorithm may create, e.g., Latin hypercube designs [172] or other (prefer-
ably space-filling) designs.
The model() algorithm may employ, e.g., linear regression models, Random Forests
(RF), Radial Basis Function Networks (RBFN), Artificial Neural Networks (ANN),
Support Vector Machines (SVM), or other data-driven regression models [126, 137].
These models are assumed to be cheaper to evaluate than the expensive objective func-
tion f(x). One of the more frequently used surrogate models is Kriging [220, 93]. It
is in the focus of this thesis and is introduced in more detail in Section 2.3.
The optimizer() algorithm may be, e.g., the EA described in Algorithm 1, or any
other global optimization algorithm. The optimizer can either directly optimize the
prediction of the model, or else it could optimize a so-called infill criterion that is
derived from the model [93] (cf. Section 2.4). In essence, the optimizer can thus avoid
evaluating the expensive fitness function directly. Instead, the EA repeatedly optimizes
a surrogate model that becomes increasingly accurate during the optimization run.
For a more detailed review of SMBO techniques, we refer to the literature [136,
257, 232, 137, 26]. One important link between EAs and SMBO is the pre-selection
approach of the metamodel-assisted evolution strategies discussed by Emmerich et
al. [83]. SMBO algorithms find application in many domains. Besides engineering de-
sign [93], algorithm tuning is a frequent area of application. The sequential parameter
optimization approach [24, 20] mentioned in Section 2.1 is one important framework
in this context.
Sometimes, SMBO problems can become multi-objective. That implies, potentially
conflicting goals may have to be satisfied by the optimization procedure. We focus
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on single-objective problems, but the models discussed in this thesis may as well be
applied to multi-objective problems. For more details on such considerations, we refer
to a recent survey by Chugh et al. [63].

2.3 Introduction to Kriging
The popularity of Kriging (also known as Gaussian process regression) in the field
of SMBO is based on its flexibility and predictive accuracy. In addition, it provides
an estimate of its own uncertainty. The latter feature is especially useful in SMBO
algorithms, as it is crucial for the computation of many infill criteria. The foundations
of these ideas are the seminal works by Mockus et al. [175], Sacks et al. [220], and
Jones et al. [140]. A very comprehensive description of Kriging-based optimization is
given by Forrester et al. [93], whose work is also an important basis for the following
remarks and equations.

2.3.1 Kriging Model
We assume that we have some data set X = {x(1), . . . , x(n)} of n ∈ N samples, each
sample being an m-dimensional real-valued x ∈ Rm. The corresponding observations
for each sample are represented by the vector y ∈ Rn. Kriging can make powerful
predictions with the (on the first glimpse) simple model:

yi = µ+ εi

Importantly, Kriging assumes that the observations y are realizations of a stochastic
process where the errors εi are spatially correlated. Two nearby observations should
have a similar error. Thus, εi is clearly dependent on the sample location x, and we can
write ε(x(i)). Errors are considered to be positively correlated if the distance between
two sample locations is small. Correlation goes to zero with increasing distance. This
relationship between the correlation of the errors and the distance of the samples can
be modeled with, e.g.,

k(x, x′) = exp

(
−

m∑
i=1

θi|xi − x′i|pi
)
, (2.1)

where xi ∈ R is the i-the component of the vector x. The function given in Eq. (2.1)
is one important example of a correlation function, or kernel. Other correlation func-
tions can be defined, but they would usually have to satisfy some important criteria.
For instance, they should approach zero for large distances, they should yield one if
x = x′, and they should usually be positive semi-definite (definiteness is discussed in
Chapters 4, 7 and 8). A matrix that collects pairwise correlations between errors of all
observations y at locations X is the correlation matrix (or kernel matrix) K.
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Figure 2.3: An illustrative example of how the correlation function in Eq. (2.1) behaves with
different sets of parameters. The plot shows the correlation in relation to the distance (absolute
difference) of two real-valued, scalar samples.

The correlation function in Eq. (2.1) has two parameters for each dimension of the
search space, θi and pi. The interpretation of the parameters θi and pi can be best
understood when looking at the example in Fig. 2.3. The parameter θi influences how
fast the function decays to zero. The parameter pi controls the smoothness, i.e., how
acute the curve is when the distance approaches zero.
The values of these parameters can be determined by Maximum Likelihood Estimation
(MLE) [93]. With MLE, parameters are chosen so that the observed data has the largest
likelihood, given the specified model. The likelihood function of the Kriging model is
based on the probability density function of a multivariate normal distribution,

pdfMVN(y) =
1

(2π)n/2|C|1/2
exp

(
−1

2
(y − 1µ)TC−1(y − 1µ)

)
,

where 1 is a vector of ones. The stationary covariance matrix C is related to the
correlation matrix K with

C = σ2K. (2.2)

This yields the likelihood function

L(ε(X)|µ, σ, θ, p) =
1

(2πσ2)n/2|K|1/2
exp

(
−(y − 1µ)TK−1(y − 1µ)

2σ2

)
. (2.3)

Here, µ and σ are also parameters to be determined by MLE. To determine all param-
eters (θ, p, σ, µ) by MLE, the partial derivatives of the likelihood function have to be
set to zero. The partial derivatives yield closed-form solutions for µ and σ2,

µ̂ =
1TK−1y

1TK−11
,
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and

σ̂2 =
(y − 1µ̂)TK−1(y − 1µ̂)

n
.

By taking the logarithm, substitution of µ̂ and σ̂, and subsequent removal of constant
terms, Eq. (2.3) becomes the so-called concentrated log-likelihood function:

con(ln(L)) = −n
2

ln(σ̂2)− 1

2
ln(|K|).

This function is used to find the remaining parameters of the correlation function.
However, an algebraic, closed-form solution is not available. Instead, numerical op-
timization is required to maximize the concentrated log-likelihood with respect to the
remaining parameters. This can be done with classical optimization methods, or with
population-based methods, like EAs, to allow for a global search.

2.3.2 Kriging Prediction
With the equations discussed above, we can derive the necessary parameters of a model
that describes the observed training data. But how can this model be used to generate
predictions with respect to a new sample x∗? In the following, the basic idea of predic-
tion with Kriging is explained. Forrester et al. give a more detailed derivation of the
formulas [93] that we use as a basis for this description.
The unknown function value of a new solution is denoted as ŷ. Determining this value
is denoted as prediction. The core idea is to add the new solution to the set of existing
solutions. This yields the augmented vector of observations yaug =

[
yT ŷ

]T
. Then,

we treat ŷ like a model parameter. That is, we maximize the likelihood function with
respect to ŷ. To that end, the vector of correlations between a new sample x∗ and
the set of training samples X is, k =

[
(k(x(1), x∗), ..., k(x(n), x∗)

]T
. This is used

in the augmented correlation matrix Kaug =

[
K k

kT 1

]
. Kaug, yaug, and all earlier

determined model parameters are substituted into the likelihood function in Eq. (2.3).
Maximizing the terms of Eq. (2.3) depending on ŷ yields the predictor

ŷ(x∗) = µ̂+ kTK−1(y − 1µ̂). (2.4)

2.3.3 Uncertainty Estimate
An important feature of Kriging is that it also provides an estimate of its own local
uncertainty, or its prediction error. Roughly speaking, if the new sample x∗ has a
large distance to the training data, the uncertainty of the predicted value is also large.
Typically, the uncertainty also increases if the model gets more rugged or active in the
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respective region (i.e., large rates of change). The uncertainty of the prediction can be
estimated with [220, 93]

ŝ2(x∗) = σ̂2(1− kTK−1k). (2.5)

Kriging is not the only modeling tool that can produce uncertainty estimates. For ex-
ample, uncertainties could always be estimated by training models with subsets of the
data (e.g., cross-validation). However, stochastic models, like Kriging, produce these
estimates quite naturally, with little additional effort, and impose important proper-
ties on the uncertainty estimates. For instance, if no noise is modeled, the uncertainty
estimate goes to zero with decreasing distance to a training data sample. Uncertain-
ties estimated by cross-validation would be non-zero at the training samples. The
importance of the uncertainty estimate and its properties in model-based optimization
becomes more clear in Section 2.4.

Example 2.3.1. To demonstrate the predictor and uncertainty estimate of a Kriging
model, we consider the simple function

y = f(x) = x4 − 2x2 + x,

with x ∈ R. The function has been sampled at X = {−1.3,−0.6, 0.1, 0.8, 1.5}. The
corresponding observations are y ≈

[
−1.82 −1.19 0.08 −0.07 2.06

]T. We fix
p = 2 for the sake of simplicity and the maximum likelihood estimate of the remaining
kernel parameter is θ ≈ 1.97. We provide a plot of the resulting predictor in Fig. 2.4.
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Figure 2.4: The prediction ŷ(x) of a Kriging model (blue solid line) based on five data samples
(red dots) from the true function f(x) = x4 − 2x2 + x (black dotted line). The shaded region
indicates the uncertainty estimate of the model, i.e., ŷ(x)± ŝ(x).

2.3.4 Nugget Effect
Kriging also allows dealing with noisy data, using the so-called nugget effect. This
adds a small constant (the nugget, or the regularization constant η) to the diagonal of
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the correlation matrix. If the nugget is employed, the otherwise interpolating Kriging
model is able to regress the data, introducing additional smoothness into the predicted
variable.
This thesis mostly deals with deterministic problems. Still, the nugget can be useful in
this context. It is often used for regularization, that is, to increase numerical stability:
If the correlation matrix is close to singular, increasing the diagonal may be necessary
to guarantee that the inverse of the matrix can still be reliably computed. Mohammadi
et al. [176] cover regularization of ill-conditioned matrices for Kriging in more detail.
One drawback of the nugget effect is that it may deteriorate the uncertainty estimate.
That is, the uncertainty estimate becomes non-zero at observed locations. To avoid
such an issue, a so-called re-interpolation approach can be employed [93]. This ap-
proach re-computes the uncertainty estimates based on the predicted values instead of
the true observations.

Example 2.3.2. As an extension of Example 2.3.1, Fig. 2.5 shows a model with a
nugget of η = 0.1 but without re-interpolation. Figure 2.6 shows the same model
with re-interpolation. In both cases, the nugget leads to a model that does not exactly
reproduce all training samples.
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Figure 2.5: The prediction ŷ(x) of a Kriging model with nugget effect but without re-
interpolation (blue solid line) based on five data samples (red dots) from the true function
f(x) = x4− 2x2+x (black dotted line). The shaded region indicates the uncertainty estimate
of the model, i.e., ŷ(x)± ŝ(x).
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Figure 2.6: The prediction ŷ(x) of a Kriging model with nugget effect and re-interpolation
(blue solid line) based on five data samples (red dots) from the true function f(x) = x4 −
2x2+x (black dotted line). The shaded region indicates the uncertainty estimate of the model,
i.e., ŷ(x)± ŝ(x).

2.4 Efficient Global Optimization

The Efficient Global Optimization (EGO) algorithm’s [140] most distinctive feature is
its use of the uncertainty estimate ŝ2(x). EGO essentially follows the typical SMBO
concept presented in Algorithm 3. The most important distinction occurs in Line 10.
Here, EGO does not simply minimize the prediction, but rather optimizes a so-called
infill criterion. In EGO, this infill criterion is the Expected Improvement (EI) [175,
140]. Other infill criteria include, e.g., the Probability of Improvement (PI) or the
Lower Confidence Bound (LCB) [93].
For each sample x, the Kriging model specifies a normal distribution with mean ŷ(x)
and variance ŝ2(x). Based on that distribution, we can estimate a probability of reach-
ing a certain objective function value or better. For the model from Example 2.3.1,
Fig. 2.7 shows the corresponding probabilities. The PI of each sample x is the de-
picted probability along the dashed line that marks the best-observed function value.

Unfortunately, the PI does not consider how large a potential improvement is. Here, the
improvement implies the difference between a potential function value and the best-
observed value. Clearly, improvements cannot be negative. Hence, the improvement
is defined as

I(ŷ) = max
((

min(y)− ŷ
)
, 0
)
.

If the PI is large, but the improvement itself is extremely small, the corresponding
sample may not be a very promising candidate solution. The EI intends to alleviate
this. It is the expectation of I(x). In contrast to the PI, it takes the likelihood as well
as the magnitude of the improvement into account.
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Figure 2.7: The prediction of a Kriging model without nugget (blue solid line) based on five
data samples (red dots) from the true function f(x) = x4 − 2x2 + x (black dotted line). The
color scale of the background presents the probability of attaining the corresponding y value
or better. The dashed black line marks the best-observed function value. Improvements only
occur below that line.

The EI of a sample x is [140]

EI(x) =

{
y∗Φ

(
y
∗

ŝ(x)

)
+ ŝ(x)φ

(
y
∗

ŝ(x)

)
if ŝ (x) >0

0 else
, (2.6)

The EI is based on y∗ = min(y)−ŷ(x), the cumulative distribution function Φ(.) of the
normal distribution, and the probability density function φ(.) of the normal distribu-
tion. Furthermore, min(y) returns the minimum of all observed function values y. In
each iteration of the EGO algorithm, the EI(x) is maximized. The resulting candidate
solution x is evaluated with the expensive objective function f(x).
EI is very useful to balance the trade-off between exploitation and exploration in
SMBO. By respecting both the prediction ŷ(x) and the uncertainty estimate ŝ(x), EI
drives the search into poorly explored regions with potentially good function values.
It may prevent cases where a Kriging-based optimization algorithm would get stuck
in local optima. Once a local optimum has been found, the EI of nearby solutions is
close to zero (and exactly zero at the local optimum itself). Here, we understand a
local optimum as a candidate solution with neighbors of equal or worse fitness.
Note that algorithms like EGO are also known as Bayesian optimization, following the
terminology of Mockus et al. [175].
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Chapter 3

A Survey of Surrogate Models for
Discrete Problems

Chapter 2 described basic SMBO approaches established for real, vector-valued search
spaces, with x ∈ X ⊆ Rm. This chapter comes back to the focus of this thesis: the
broad class of search spaces, x ∈ X where X is some nonempty set, e.g., representing
discrete, combinatorial, or mixed search spaces.
As already mentioned in Section 1.1, SMBO approaches were rarely discussed in the
context of combinatorial, discrete, or mixed optimization. This scarcity is unlikely due
to a lack of problems in this field. Rather, suitable surrogate modeling methods are not
available or known to experts in potential application domains. To close this gap and to
provide a background for our contributions, we provide a survey of discrete surrogate
modeling techniques.

3.1 Strategies for Dealing with Discrete Structures
For surrogate modeling in discrete search spaces, six strategies (STR) can be identified
in the literature.

STR-1 The naive approach: As long as the data can still be represented as a vector (bi-
nary variables, integers, categorical data, permutations) the discrete structure
can be ignored. SMBO can be applied without any modifications.

All following sections of this chapter are based on parts of the article “Model-based Methods
for Continuous and Discrete Global Optimization” by Bartz-Beielstein and Zaefferer [26].
This includes many text elements that are taken verbatim from that publication. In the article,
the discussion of continuous optimization methods was mostly contributed by Thomas Bartz-
Beielstein. The part that is relevant to this chapter was mostly contributed by the author of this
thesis. The survey was rewritten, restructured, and expanded. To a lesser extent, a few consid-
erations have been taken from the article “Efficient Global Optimization for Combinatorial
Problems” by Zaefferer et al. [273].
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Figure 3.1: Six different strategies for surrogate modeling in discrete search spaces.

STR-2 Customized models: A specific modeling solution is tailored to fit the needs of
a certain application.

STR-3 Inherently discrete models: Some models already are discrete by their own
design.

STR-4 Mapping: Discrete variables or structures are mapped to a more easily treatable
representation.

STR-5 Feature extraction: Instead of directly modeling the relation between an object
(or its representation) and its quality, it is possible to calculate numeric fea-
tures of the object. The resulting feature values can be modeled with standard
techniques.

STR-6 Kernel-based modeling: Where available, discrete kernels (measures of (dis)-
similarity) may be used to replace continuous kernels that, e.g., are employed
in models like k-Nearest Neighbors (k-NN) [39], SVM [224], RBFN [39], or
Kriging.

The subsequent sections present key characteristics of the strategies, and summarize
the relevant literature.

3.2 Naive Approach
The most basic strategy to deal with a discrete search space X is to simply ignore the
nature of the search space and apply the usual methods from continuous optimization.
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Clearly, this is only feasible if the sample x ∈ X can still be represented as a vector.
Especially if the discrete variables are of an ordinal nature, the naive approach may
still be successful. A potential drawback of this approach is that the model’s input
space may have large areas of redundancy. Or else, this approach may create large
areas of infeasible solutions. Depending on the employed optimization algorithm, this
may deteriorate performance compared to strategies that are more advanced.

3.3 Customized Models
A more sophisticated approach is to employ customized, application specific solutions.
On the one hand, this procedure can be very efficient because it integrates significant
prior knowledge into the model. On the other hand, a customization approach may in-
troduce bias. The result may be hard to transfer to other applications or data structures.
If applicable at all, customized models often require significant effort or knowledge of
the application domain expert. Clearly, this approach is not applicable to true black-
box problems.
One example for customized models is presented by Voutchkov et al. [254]. They
optimize a weld sequence, which is represented as a signed permutation. Here, the
weld path is divided into segments. The permutation specifies the order in which
those segments are welded. Each sign indicates the direction in which a segment is
welded. They attempt to find a weld sequence that yields a minimal displacement due
to thermal stresses. Simulating the displacement via a finite element model is com-
putationally expensive. Hence, Voutchkov et al. suggest replacing it with a surrogate
model by estimating the influence of each segment in the weld sequence, based on
previously simulated weld sequences. In addition to the objective function values, this
surrogate model also exploits intermediate results that can express the impact of in-
dividual segments, depending on their position in the weld sequence. Voutchkov et
al. [254] find a near-optimal welding sequence by evaluating only 28 out of 46, 080
possible sequences. Variations of this approach for weld sequence optimization are
described by Asadi and Goldak [11], and Bonnaud [42]
For binary problems, Verel et al. [252] suggest a model based on the Walsh decompo-
sition. In terms of model quality, they show that the Walsh model tends to outperform
Kriging on larger data sets. We categorize the Walsh model as a customized model
because it cannot be immediately transferred to other problem classes, such as per-
mutation problems. Still, similar decomposition approaches may be devised for other
problem classes.
Another example is presented by Nguyen et al. [192], who use a simplified objective
function (a simulation model for job shop scheduling) as a surrogate model in genetic
programming. They actively attempt to reduce the complexity of the objective func-
tion (e.g., reduced simulation times, reduced number of machines or operations). This
approach is also used by Mei et al. [174]. Similarly to the weld sequence optimization
approach, a simplification of the simulation model is specific to the considered applica-
tion. While similar simplifications may be possible with most simulation optimization
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problems, it is infeasible to apply this approach to a problem that is not based on a
simulation procedure.
Following these examples, many classical approaches in combinatorial optimization
could also be labeled as customized surrogate models. Consider for instance the trav-
eling salesperson problem. Here, to optimize the cost of visiting a set of locations,
a permutation is optimized such that the traveled distance is minimal. Clearly, this
model is only an approximation of reality. It does not account for many aspects of
the real-world problem, e.g., stochasticity of actual travel costs or asymmetric travel
costs between locations. Hence, the TSP model could be understood as a (customized)
surrogate model. In this sense, customized surrogate models could be thought of as a
standard approach towards solving combinatorial optimization problems.

3.4 Inherently Discrete Models
Some models are themselves discrete. One example is the class of tree-based models,
such as regression trees or random forests. Random Forests have already been em-
ployed as surrogate models in the field of algorithm tuning [126, 128, 246, 80, 125, 38,
198, 72].
On the one hand, these models easily deal with discrete data. They are an intuitive way
to incorporate binary, categorical, or ordinal integer variables.
On the other hand, this strategy may fail if the discrete structures become more com-
plex (e.g., graphs). Furthermore, in a mixed-variable case, a tree-based model is
not ideal to represent the continuous parameters in the mix. This issue may require
the coupling of a discrete model and a continuous one, e.g., treed Gaussian pro-
cesses [106, 107]. Finally, discrete models may not always provide features required
by the optimization algorithm. For example, uncertainty estimates can be derived from
random forests by estimating the variance from the prediction of all trees in the for-
est. Unfortunately, such an estimate does not have the same useful properties of the
uncertainty estimates of a Kriging model (cf. Section 2.3.3).

3.5 Mapping
Another important approach to discrete surrogate modeling is to map from the com-
plex, discrete space to another space that is easier to handle. Frequently employed
approaches are dummy variables and contrasts. They are often applied in the context
of classical linear regression models. A categorical variable can be mapped to a set of
dummy variables, where each dummy represents a single level of the original variable.
This is the same as the one-hot encoding, i.e., only one of several bits can be 1. The ncat

levels of the categorical variable are mapped to ncat binary variables. The resulting bi-
nary variables are still discrete, but can be handled by standard regression approaches.
Alternatively, a map to (ncat − 1) binaries can be used, where the missing level is rep-
resented by all binary variables being zero. This is an example of a contrast, which
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represents a comparison between different levels. Clearly, both approaches increase
the number of model parameters, due to the increased dimensionality of the mapped
data. Dummy variables or contrasts are probably among the most frequently applied
methods to deal with categorical variables, e.g., in the context of the response surface
methodology [188]. A similar approach is often used in genetic algorithms, e.g., to
represent integers or real-valued variables with a binary encoding [82].
Another example is the genotype/phenotype mapping that is used to apply continu-
ous evolution strategies to permutation problems, as proposed by Rudolph [216]. This
has also been called the random key mapping [29]. The data is first represented by
vectors of real numbers from a fixed interval, e.g., the interval [0, 1]. To map from
this real parameter space to permutation representations, the values are simply sorted.
For example, the real vector x =

[
0.1 0.3 0.2 0.9

]
is mapped to the permutation[

1 3 2 4
]

because x1 < x3 < x2 < x4. This mapping approach has also been used
in probabilistic models (cf. Section 3.8). Notable drawbacks are redundancies in the
real-valued parameter space as well as the non-bijective character of the mapping. Re-
dundancy occurs, e.g., when

[
0.1 0.3 0.2 0.9

]
and

[
0.2 0.4 0.3 0.8

]
both map

to the same permutation. This induces areas in the real-valued space where observed
function values are constant because they represent the same candidate. This may pose
a difficulty to some models and optimization algorithms. Non-bijectivity implies that
while each real-valued vector can be mapped to a single permutation, the converse is
not true.
A more sophisticated example of the mapping strategy are autoencoders. Autoencoders
are unsupervised models that try to reconstruct their own inputs with a coupling of an
encoder and a decoder. This approach is often used for dimensionality reduction, in
which case the coded data (after encoding, before decoding) is lower-dimensional than
the original data. But this data may also be of a different type. That is, the original data
may be discrete and the coded data continuous. One example is an application of au-
toencoders in automatic chemical design described by Goméz-Bombarelli et al. [104].
They use an autoencoder to map from the space of discrete molecule sequences to a
latent continuous space, and vice versa. Blaschke et al. [40] compare different autoen-
coder models in this context.
One additional advantage of autoencoders is that mapping to a continuous space allows
using gradient information during the search. For example, gradient information is
exploited by Mueller et al. [185]. They search for optimal sequences in the context of
text revision, making use of an ANN-based autoencoder and gradient ascent.
One potential problem of the autoencoder approach is the feasibility of candidate so-
lutions. For instance, it may be infeasible to synthesize certain suggested molecules.
Griffiths and Hernández-Lobato [108] suggest alleviating this issue by modeling the
unknown constraint function. Based on such a model, they use an infill criterion that
combines the expected improvement and the probability of constraint satisfaction of a
candidate solution. Furthermore, autoencoders are fairly complex model structures that
may be difficult to configure. Still, recent examples indicate that they are promising
solutions for quite difficult search spaces [104, 185, 108, 40].
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3.6 Feature Extraction
In many cases, it is possible to extract numeric features of the optimized object. Then,
standard models can be trained with these feature values. For example, features of a
tree or graph can be path lengths, tree depths, number of nodes, or the frequency of
certain node labels.
Of the few approaches that deal with modeling for tree-representations (symbolic re-
gression, genetic programming), many use feature extraction for modeling. Hilde-
brandt and Branke [121] extract features of the phenotypic behavior of evolved dis-
patching rules for job shop scheduling. Here, these features are based on rule deci-
sions for a small set of reference situations. The Euclidean distance is computed on
these features and is then employed in a k-NN surrogate model. From a different point
of view, this process can as well be seen as a part of the (dis-)similarity calculation,
belonging to STR-6 rather than STR-5. Hildebrandt and Branke compare the pheno-
typic approach to a genotypic distance measure: the structural Hamming distance. The
phenotypic feature extraction approach has since also been investigated by Nguyen et
al. [191] who improve the handling of replications and the selection scheme.
Pilat and Neruda [200] take a slightly different approach. They extract features from
the genotype of candidate solutions, e.g., the depth of the tree, summarizing statistics
of numeric constants in the tree, or the cardinality of certain arguments in the tree.
Feature extraction is also applied in the field of experimental chemical design. In
this context, Balachandran et al. [17] suggest a two stage approach. First, they filter
candidates via a classification approach. Then, they use a regression approach and
expected improvement to select the most promising candidates. Both the regression
model and the classification models are based on data that are derived as continuous
features of the chemical compositions.

3.7 Kernel-based Models
Kernel-based models use suitable measures of (dis)similarity to represent structured,
discrete data. Depending on their interpretation and use, these measures are referred
to as similarity measures, dissimilarity measures, distance measures, correlation mea-
sures, or kernels. While this approach is potentially very powerful, it relies on the
availability of a suitable measure. This may be especially problematic if a measure has
to fulfill further requirements, e.g., being a metric or being positive semi-definite. A
more detailed discussion of kernels and related aspects is given in Chapter 4.
Fonseca et al. [92] define similarity-based models as models that keep a memory of
data samples and estimate the performance of new samples by comparing them to
the memorized samples via a similarity measure. Fonseca et al. list fitness inheri-
tance [236], fitness imitation [148, 136], and k-NN [8] as examples for similarity-based
models. In their numerical experiments, they use a k-NN surrogate model in a genetic
algorithm to solve a set of numerical, continuous test problems. Bernardino et al. [35]
perform similar tests, but use artificial immune systems as solvers. In both cases, the
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Hamming distance and the Euclidean distance are used as measures of dissimilarity.
This shows that kernel-based models do not depend on a specific data representation or
measure. However, the k-NN model is not able to predict whether a candidate solution
provides an improvement over existing solutions. Usually, the best-observed value is
an upper bound on the prediction of the k-NN model.
To predict potential improvements, more sophisticated kernel-based models are of in-
terest: RBFN, SVM, and Kriging. Hemker [117] describes an approach for dealing
with continuous and ordinal integer variables, which is applied to electrical engineer-
ing and water resource management problems. Their approach is based on Kriging,
essentially treating all parameters with the same distance function. Hence, this ap-
proach is not directly applicable to categorical parameters or representations that are
more complex. Li et al. [164] propose an adaptation of RBFNs. These adaptations
are based on a weighted sum of distance measures, which replaces the usual distance
measures that are employed in RBFNs. They apply the distance-based RBFN model
to mixed-integer optimization problems. Brownlee and Wright [48] use the same ap-
proach for a multi-objective building design optimization problem.
Mixed optimization problems also arise in algorithm tuning. In this context, Hutter et
al. [127] propose a Kriging model with a Hamming distance-based correlation function
to handle categorical variables. A combination of Kriging and tree-based models called
treed Gaussian processes is discussed by Swiler et al. [242]. They apply a treed Gaus-
sian process model, a Kriging model, and a smoothing spline technique to build sur-
rogate models for mixed-integer problems. Coelho et al. [87] and Herrera et al. [119]
apply a kernel-based regression method to mixed-variable optimization problems. A
different approach with RBFNs for the case of a mixed (discrete and continuous) opti-
mization problem is taken by Bajer and Holena [16]. They use the Hamming distance
to cluster the discrete variables, then fit a standard RBFN to the continuous variables
for each cluster.
Moraglio and Kattan [179] propose to use arbitrary distances measures in an RBFN
to produce surrogate models for combinatorial optimization problems. They applied
their approach to quadratic assignment problems [181]. A corresponding extension for
Kriging was investigated by Zaefferer et al. [273]. Here, Kriging-based EGO [140]
showed positive results when applied to combinatorial problems. Zaefferer et al. [271]
also showed that MLE could be used to efficiently select from a set of distance mea-
sures. More details with respect to these works can be found in Chapters 5 and 6.
Cáceres et al. [199] report negative results for the application of Kriging and EGO to
permutation problems. They report that an ant colony optimization algorithm was not
outperformed by a Kriging-based variant of the same algorithm. Smith et al. [235]
solve extremely high-dimensional problem instances, employing RBFN models.
All these modeling approaches use distances and kernels in a standard, straightfor-
ward way. However, it is often important to consider if the employed distances are
Conditionally Negative Semi-Definite (CNSD) or if the derived kernels are Positive
Semi-Definite (PSD). Definiteness is a frequent requirement for modeling methods
based on distances or kernels. Dealing with the possible indefiniteness of a function is
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hence of utmost concern. More details on this are discussed in Chapters 7 and 8.
While kernel-based models are rarely applied in discrete optimization, they are more
frequently applied for machine learning with discrete data in general. One early exam-
ple are the convolution kernels proposed by Haussler [116]. They propose to generate
a kernel for discrete data via the convolution of kernels on parts of the discrete ob-
jects. Kondor and Lafferty suggest a diffusion kernel to model graphs and discrete
input spaces with Gaussian processes or SVMs [151]. The diffusion kernel is closely
related to random walks, which are also related to the graph kernels proposed by Smola
and Kondor [237]. Focusing on SVMs, Gärtner gives an early survey on kernels for
structured data [98]. By structured data, they imply any data that is not “represented
in a single table” [98]. They include (structured) strings, trees, and graphs into this
definition. A unified framework for kernels on graphs is presented by Vishwanathan et
al. [253]. Bellet et al. [31] give an overview of metric learning for structured data.
They also discuss how edit distances can be learned for strings or graphs. They
note that the field of structured data is less explored than numerical data. Paassen
et al. [194] propose distances and kernels to produce a Gaussian process model of a
time series of structured, discrete data. Discrete kernels for strings or graphs are also
suggested for Gaussian process models as, e.g., described in the Work by Rasmussen
and Williams [206].
Recently, Gaussian process models have also been applied for the optimization of the
structure of neural networks (neuroevolution). Gaier et al. propose to use the compati-
bility distance for that purpose, which is mostly based on a weighted sum of differences
between shared edges or nodes [96].
Most of the aforementioned references make use of distance measures in genotype
space. For the case of genetic programming, Hildebrandt and Branke [121] show that a
distance in phenotype space may be an excellent choice, see also the preceding section.
A phenotypic distance for symbolic regression is investigated by Zaefferer et al. [272].

3.8 Alternative Models
Up to now, we did not take the important class of probabilistic models into account.
Examples of combinatorial optimization algorithms employing such models are Esti-
mation of Distribution Algorithms (EDA) and Ant Colony Optimization (ACO) [276,
115]. Compared to the earlier presented works, these algorithms usually operate under
different assumptions. They are often applied to less expensive (although not nec-
essarily cheap) problems. Still, they can be considered to use surrogate models. If
necessary, a mapping between the probabilistic model and objective function values
can usually be established (cf. [230, 46]). Examples for expensive optimization with
ACO are, e.g., the works by Cáceres et al. [199] and Teixeira et al. [245]. Examples
for expensive optimization with EDAs include building design [47] and reactor fuel
management [134].
The probabilistic models used in EDAs can also be classified into our six strategies.
For instance, there are EDAs that employ a mapping approach (STR-4), e.g., EDAs for
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permutation problems using the random key mapping [57]. Other EDAs use problem-
specific solutions (STR-2). One example is the EDA based on the (generalized) Mal-
lows model for permutations [168, 59, 58].
Another relevant model class are graph models like Bayesian networks or Markov ran-
dom fields (MRFs). These are of interest because they may directly encode the graph
structure of the candidate solution representations [6]: directed graphs in Bayesian
networks and undirected graphs in MRFs. Graph-based models are closely linked to
distribution-based approaches, e.g., [197, 157, 230, 46, 47]. Mostly, these approaches
can be classified as inherently discrete models (STR-3).

3.9 Conclusions
The six strategies for surrogate modeling in discrete search spaces are not mutually
exclusive. For example, kernel-based models (STR-6) can be re-interpreted as map-
ping approaches (STR-4): As discussed in Section 4.1, kernels can be understood to
implicitly map from the original space to a larger, or even infinite-dimensional space.
With that said, the main benefit of our classification into six strategies is not that it
provides a sharp distinction between the different strategies. Rather, these different ap-
proaches may support the thought process required to design suitable models. Think-
ing about a specific problem in terms of extracted features, mapping functions, or
similarity measures may help to devise an efficient model.
The problem type and application restrictions govern the result of this design process.
Even a naive approach (STR-1) may be adequate, if the problem is sufficiently simple.
If the necessary prior knowledge is available, customized models are probably well
suited (STR-2). If the data structures match to the corresponding models, inherently
discrete models (STR-3), such as random forests, are clearly a promising choice.
However, complex search spaces can render STR-1 and 3 infeasible, and the black-box
nature of a problem may eliminate the option to use STR-2. Hence, the strategies STR-
4, 5 and 6 tend to be more versatile for the problems discussed in this thesis. We focus
on kernel-based models (STR-6) and mostly use Kriging. Still, some approaches we
employ could easily be interpreted in the context of mapping and feature extraction.
For instance, the Arc-kernel later discussed in Section 9.2.1 could be understood to
use a mapping from a complex hierarchical search space into a space where a standard
kernel can be used (STR-4). Or else, the phenotypic distance examined in Section 9.1.3
can be understood to measure distance in a phenotypic feature space (STR-5).
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Chapter 4

Kernels: Terminology and Definitions

As mentioned in Chapter 3, kernel-based models are at the center of this thesis. This
chapter provides the necessary foundations, by discussing the background on kernels,
similarity measures, distances, and related concepts.
Following Murphy [187], we define a kernel as a real-valued function k(x, x′) with

k : X × X → R
(x, x′) 7→ k(x, x′)

(4.1)

that is usually symmetric k(x, x′) = k(x′, x) and non-negative k(x, x′) ≥ 0. In general,
we make no further assumptions about k(x, x′) or the nonempty set X . Mostly, the
kernels employed in this thesis express some sort of dissimilarity or similarity between
the samples or candidate solutions x, x′. In the following, some issues of particular
interest are discussed. We start with an important motivation of employing kernels,
i.e., the kernel trick. Afterwards, we give some general terms and definitions. Most of
the specific kernels used in this thesis are described in Appendix B.

4.1 Motivation: The Kernel Trick

One reason for the popularity of kernel-based models is the so-called kernel trick [224].
When linear models are faced with non-linear learning tasks, the kernel trick allows
mapping the original data into a higher-dimensional space (sometimes called the fea-
ture space [206]) where the problem becomes solvable by linear methods. The kernel
trick allows computing dot products in that higher-dimensional feature space, without
having to compute the required mapping directly [224].

In less detail, some of the terms and definitions from this chapter have already been discussed
in section 2 of “An Empirical Approach for Probing the Definiteness of Kernels” by Zaefferer
et al. [266]. Hence, there is some overlap with that section. We added more details, including
an illustrative motivation of the kernel trick.
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Example 4.1.1. Let us assume that we intend to model the one-dimensional function
f(x) = x2 with x ∈ [−1, 1] using a simple linear regression model with first order
effects only, that is,

y = β0 + β1x+ ε, (4.2)

where βi are model coefficients, and ε is independent, normally distributed error with
zero mean and variance σ2. We sample 11 equidistant points in the given interval and
evaluate them with f(x). As was to be expected, the resulting model does not represent
this data very well, as is shown in Fig. 4.1.
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Figure 4.1: The prediction of the linear regression model from Eq. (4.2) (blue solid line) based
on 11 data samples (red dots) evaluated with f(x) = x2 (black dotted line).

Applying the kernel trick, we can map our data into a higher-dimensional space. For
this simple example, a two-dimensional feature space suffices. We choose two sam-
ples x(a) = −0.5 and x(b) = 0.5 as centers for our mapping, as well as a kernel
function k(x, x′) = e−θ(x−x

′
)
2

. Here, we assume that the kernel parameter θ = 0.1 is
known a priori. This yields for every x ∈ [−1, 1] a corresponding value k(x, x(a)), and
k(x, x(b)). We can now train a simple linear regression model with these two features,
that is,

y = β0 + β1k(x, x(a)) + β2k(x, x(b)) + ε. (4.3)

This yields the near-perfect fit depicted in Fig. 4.2. As it is still of a low dimensionality,
we can plot the model and the training data in the two-dimensional feature space. The
respective plot is given in Fig. 4.3. The original space is embedded as a curve in the
feature space, indicated by the dots that represent the training data. Points that do
not reside along that curve in feature space have no correspondence in the original,
one-dimensional space.
By using more than just two centers, we could easily extend this example to more
complex non-linear functions. If we used all training data samples as centers, we
would receive a model based on the 11 × 11 kernel matrix K. This model would be
very similar to the Kriging model introduced in Section 2.3.1.
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Figure 4.2: The prediction of the linear regression model from Eq. (4.3) employing the kernel
trick (blue solid line) based on 11 data samples (red dots) evaluated with f(x) = x2 (black
dotted line).
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Figure 4.3: The prediction of the linear model from Eq. (4.3) in the two-dimensional feature
space spanned by the kernel function. The dots represent the training data mapped into the
feature space. The solid lines are isolines of the predicted values.
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4.2 Similarity Measures

Similarity measures are kernels that express how much two objects (samples or candi-
date solutions) resemble each other. Similarity measures are often employed in meth-
ods such as RBFN or SVM [224].
Kriging, which is of particular interest in this thesis, uses a specific type of similarity
measure: correlation functions. Correlation functions are kernels k(x, x′) that fulfill
certain requirements:

• Correlations are restricted to values |k(x, x′)| ≤ 1.

• Identical samples are perfectly correlated k(x, x) = 1.

• Correlation functions should be Positive Semi-Definite (PSD) (see Section 4.4.2
for a definition).

The latter can more intuitively be phrased as the requirement that the weighted sum of
random variables has a variance, which is necessarily non-negative. More details on
the concept of definiteness are discussed in Section 4.4, Chapter 7 and Chapter 8.
In the context of Kriging, correlation functions usually do not yield negative values.
This expresses the intuition that correlation decreases the more disparate two sam-
ples get and approaches zero for large distances. Correlation functions can also be
transferred to covariance functions. In the stationary case, this is simply done by mul-
tiplying with the constant variance σ2k(x, x′). As multiplication with a scalar does
not affect definiteness, covariance functions should also be PSD. The diagonal of a
covariance matrix should be non-negative because it represents a variance.

4.3 Dissimilarity Measures

Another important class of kernels are dissimilarity measures. They are the comple-
ment to similarity measures, and express how disparate two objects or samples are.
That is, a measure of dissimilarity should become larger the more distinct two com-
pared objects x and x′ are.
In the following, two types of dissimilarity measures are introduced: distance measures
and distance metrics. They find frequent use in this thesis. Due to the focus on discrete,
combinatorial data structures, the concept of edit distance measures is also introduced.

Distance Measure Distance measures (or distance functions) compute a dissimilar-
ity d : X × X → R+ of two objects x, x′ ∈ X .
For a set of n ∈ N objects, the n× n distance matrix D collects the pairwise distances
Dij = d(x(i), x(j)) for all i, j = 1, . . . , n. A distance value is often expected to satisfy
some intuitive conditions. For instances, it should not become negative.
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Distance Metric The term distance metric implies a set of more formal conditions.
By definition, a distance measure d(x, x′) is a distance metric if

• it is symmetric d(x, x′) = d(x′, x),

• non-negative d(x, x′) ≥ 0,

• preserves identity d(x, x′) = 0 ⇐⇒ x = x′,

• and satisfies the triangle inequality d(x, x′′) ≤ d(x, x′) + d(x′, x′′).

For example, the Euclidean distance is a metric, while the squared Euclidean distance
is not: it violates the triangle inequality. Distance measures that do not preserve iden-
tity are often called pseudo-metrics. That means, a pseudo-metric can yield zero, al-
though x 6= x′.

Edit Distance One specific class of distance measures are edit distance measures.
Edit distance measures count the minimal number of edit operations required to trans-
form one object into another. These edit operations are small, discrete changes of the
respective object (or sample). Their exact nature depends on the application. For in-
stance, tree structures may require different operations than strings or sequences. An
edit distance measure may concern one specific edit operation (e.g., only swaps of el-
ements in a sequence) or a set of different operations (e.g., the Levenshtein distance
with substitution, deletion, and insertion operations). For combinatorial or structured
data, edit distance measures play an important role because they are often an intuitive
choice to express distance between samples.
Due to their definition, it is usually simple to show that edit distance measures are
metrics:

• Non-negativity: Edit distance measures count operations. A count cannot be
negative.

• Identity preservation: Identical objects do not require any edit operations to
transform one into the other. Hence, their edit distance is zero. Non-identical
objects always require some edit operation(s). Thus, their distance is non-zero.

• Symmetry: Clearly, turning object x into x′ or x′ into x requires the same set
of edit operations, only in reverse. Hence, edit distance measures are nearly
always symmetric. An exception could be caused by an edit operation that is not
reversible by a single operation.

• Triangle inequality: Due to the definition of edit distance measures (minimal
number of operations), the triangle inequality cannot be violated. Any distance
along an indirect path via a third point d(x, x′) + d(x′, x′′) can be seen as a
combined set of consecutive edit operations. As the distance along the direct
path d(x, x′′) is by definition a minimal number of operations, it cannot be larger
than the indirect path.
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There are special cases where edit distance measures operate under certain restrictions
that let them violate the triangle inequality (e.g., the restricted Damerau Levenshtein
distance [44]).

4.4 Definiteness
Kriging usually requires kernels to be definite. This requirement is also common to
many other kernel-based models, such as SVMs [223]. This section first introduces
the concept of definite matrices, and then extends the concept to functions. We refer to
the literature for more in-detail descriptions and proofs that are the foundation of the
following considerations [32, 223, 53].

4.4.1 Definiteness of Matrices
A symmetric, square matrix A of dimension n× n ( n ∈ N) is Positive Definite (PD)
if and only if

n∑
i=1

n∑
j=1

cicjAij > 0, (4.4)

for all c ∈ Rn \ {0}, where 0 is a vector of zeros. This is equivalent to cTAc > 0,
and also equivalent to all eigenvalues being positive, 0 < λ1 ≤ λ2 ≤ . . . ≤ λn. Due to
symmetry, the eigenvalues are λ ∈ Rn.
Respectively, a negative definite (ND) matrix implies negative eigenvalues (λn < 0)
and cTAc < 0. If some eigenvalues are zero, the matrix is called Positive or Negative
Semi-Definite (PSD, NSD), i.e., cTAc ≥ 0 or cTAc ≤ 0.
If mixed signs are present, the matrix may be called indefinite. Kernel or correlation
matrices are examples of matrices that are often required to be PSD.
A broader set of matrices are Conditionally PSD or NSD (CPSD, CNSD) matrices.
Here, the coefficients c have to satisfy

n∑
i=1

ci = 0, (4.5)

with n > 1. All PSD (NSD) matrices are CPSD (CNSD). Conditionally definite ma-
trices do also have a relation to eigenvalues. CNSD matrices have at most one positive
eigenvalue [18]. Symmetric, non-zero, non-negative CNSD matrices (e.g., distance
matrices) have exactly one positive eigenvalue [18]. According to Ikramov [130], we
can check whether A is CNSD as follows. Let the n× n matrix P be1

P =

[
In−1 − 1 1T/n −1/n[

0 . . . 0
]

1

]
, (4.6)

1 The definition of P in Eq. (4.6) is only one option. Any non-singular matrix is feasible, if all but
the last row sums are zero, and the last row sum is one.
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with 1 =
[
1 . . . 1

]T and In−1 is the (n − 1) × (n − 1) identity matrix. Then, the
n× n matrix B is

B = PAPT,

then A is CNSD if and only if the matrix

Â = Bn−1 (4.7)

is NSD [130]. Here, Bn−1 is B without its last row and column. The largest eigenvalue
of Â, which determines whether A is CNSD, will be denoted by λ̂.

4.4.2 Definiteness of Kernels
The definition of definiteness can be extended from matrices to functions, which is
especially important for kernels. In the literature, the respective notations and defini-
tions are not used consistently. These inconsistencies are due to historical reasons. For
instance, in linear algebra, positive definite is used to describe the relation (... > 0) and
positive semi-definite for (. . . ≥ 0). In functional analysis positive definite is used for
(. . . ≥ 0) and the relation (. . . > 0) is denoted with strictly positive definite. We use
the notation from linear algebra in this thesis. Similarly, conditionally negative definite
is often abbreviated with negative definite. We always indicate the conditional nature
of a kernel (or matrix), so that the notation respects the basic symmetry between the
definitions of negative definite and positive definite. The upcoming description roughly
follows the definitions and notations from the relevant literature [32, 223, 53].
For the nonempty set X , a symmetric kernel k(x, x′) is called PSD if and only if

n∑
i=1

n∑
j=1

cicjk(x(i), x(j)) ≥ 0,

for all n ∈ N, x(1), . . . , x(n) ⊆ X and c1, . . . , cn ⊆ R. A PSD kernel always yields
PSD kernel matrices.
Equivalently, a kernel is negative semi-definite if and only if

n∑
i=1

n∑
j=1

cicjk(x(i), x(j)) ≤ 0, (4.8)

for all n ∈ N, x(1), . . . , x(n) ⊆ X and c1, . . . , cn ⊆ R.
Analogous to the matrix case, conditionally definite functions imply that the coef-
ficients c satisfy the condition in Eq. (4.5). The importance of CNSD functions is
because the distance measure d(x, x′) is CNSD if and only if the kernel k(x, x′) =
exp(−θd(x, x′)) is PSD ∀ θ > 0 [223]. One example of a CNSD function is the
Euclidean distance.
Another important fact is that the product of two PSD kernels is also PSD [32]. This
also implies that the linear combinations discussed in Chapter 6 lead to PSD kernels.
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It is often stated that kernels must be PSD [206, 70]. In fact, PSDness of a kernel
implies that there exists a mapping to an infinite-dimensional feature space, in which
the kernel acts as a dot product [224, 206] (cf. the kernel trick in Section 4.1). Still,
even an indefinite kernel function may yield a PSD kernel matrix. This may depend on
the specific data set used to train the model [50, 162] as well as the parameters of the
kernel function. Some frequently used kernels are known to be indefinite. Examples
are the sigmoid kernel [238, 55] or time-warp kernels for time series [171].
To summarize this section, Fig. 4.4 depicts the most important relations with respect
to definiteness, as used throughout this thesis.

K is PSD

λ1 ≥ 0

D is CNSD

Eq. (4.7):
Â is NSD

λ̂ ≤ 0

k(x, x′) = exp(−θd(x, x′)) is PSD

d(x, x′) is CNSD ∀ θ ∈ R+

k(x, x′) is PSD

K is PSD
∀X ⊆ X

Figure 4.4: An overview of the most important relations with respect to definiteness of matrices
and kernel functions, as considered in this thesis.

4.5 Conditioning of Matrices
A concept that is related to the definiteness of matrices is the conditioning of ma-
trices. The condition number of a symmetric matrix is the ratio of the largest and
smallest eigenvalue, κ = |λn|/|λ1|. A matrix is ill-conditioned if the condition num-
ber κ is large. Here, large usually implies that the reciprocal of κ “approaches the
machine’s floating-point precision” [203]. Conversely, if κ is small, the matrix is
well-conditioned. We do not focus on ill-conditioning, but will occasionally remark
on it because it affects numerical stability and model quality.
We usually do not discuss the condition number of distance matrices. The numerical
algorithms required for models like Kriging operate on the correlation matrix. The
correlation matrix is usually based on a distance matrix, but ill-conditioning of one
does not imply ill-conditioning of the other (unless we would use a different definition
of κ for distance matrices).
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Part II

Main Contributions



47

Chapter 5

Kriging-based Combinatorial
Optimization

This chapter comes back to the Kriging-based SMBO algorithms discussed in Chap-
ter 2. In the following, we discuss how Kriging can be applied to arbitrary combi-
natorial, discrete search spaces. Furthermore, we describe experiments with a set of
artificial test-problems, to demonstrate that this approach may indeed improve upon
model-free optimization algorithms. Hence, the core research questions of this chapter
are:

Question 5.1. Applicability. Can SMBO algorithms like EGO be applied to combi-
natorial or discrete search spaces?

Question 5.2. Comparison. How well do the respective algorithms compare to model-
free optimization techniques?

5.1 Kriging for Combinatorial Data

With the definitions of Kriging in Chapter 2 and kernels in Chapter 4, the step from a
real, vector-valued Kriging model to a discrete model is straightforward. We can make
comparable steps with most other kernel-based models, but focus on Kriging due to its
beneficial features, as described in Chapter 2.

The following sections of this chapter are partially based on the article “Efficient Global Op-
timization for Combinatorial Problems” by Zaefferer et al. [273]. Occasionally, text elements
have been adopted verbatim from that publication. Overall, the text was significantly rewrit-
ten and extended before its inclusion into this thesis. We also added an illustrative example.
The described experiments were repeated in a more thorough way. This included a more
flexible, self-adaptive evolutionary algorithm, a broader set of test functions, and a parameter
sensitivity study.
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Essentially, we exploit the fact that Kriging is mostly based on a kernel (or correlation
function), e.g., the exponential kernel

k(x, x′) = exp(−θ||x− x′||).

Our goal is to modify or replace these functions, so that x is no longer restricted to be
a real-valued vector. In fact, we can write this specific kernel function as

k(x, x′) = exp(−θd(x, x′)), (5.1)

where d(x, x′) is a distance measure. Many kernel functions can be rewritten in a
similar way. Intuitively, the underlying distance measure d(x, x′) can be replaced by
any measure that is well suited for the respective discrete search space X , e.g., an edit
distance measure for sequences or graphs. Thus, Kriging is applicable to any search
space X where a respective kernel or distance measure is available.
Of course, these considerations rely on a Kriging model that only exploits the cor-
relations, and not the underlying input data. There are Kriging variants that employ
polynomial trend functions, which describe the behavior of the data when predicting
far away from any training samples. In our case, the prediction would tend to the pro-
cess mean µ in these cases. More complex, polynomial trend functions are not directly
transferable to arbitrary search spaces.

Example 5.1.1. Let us assume that we are dealing with a problem where the ordering
(or permutation) of actions has to be optimized such that some objective value is mini-
mal. For this simple example, the artificial objective function is the swap distance to a
reference permutation xref =

[
1 2 3 4

]
, that is, f(x) = dSwa(x, xref). The swap dis-

tance is the minimal number of swaps (exchanges of neighboring elements) required
to turn one permutation into another. The optimization starts with four initial samples,

x(1) =

x(2) =

x(3) =

x(4) =

[1 2 4 3]
[1 4 3 2]
[2 1 3 4]
[3 2 4 1]

with

f(x(1)) = 1

f(x(2)) = 3

f(x(3)) = 1

f(x(4)) = 4

.

To model this data with Kriging, we need to compute a distance matrix. Again, we
choose the swap distance. We evaluate the swap-distance between the four permuta-
tions. The matrix D collects all pairwise swap distances,

D =


0 2 2 3
2 0 4 3
2 4 0 3
3 3 3 0

 .

These distances can now be plugged into a corresponding kernel or correlation func-
tion, Ki,j = exp(−θDi,j). Next, we use maximum likelihood estimation to derive the
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kernel parameter θ, which is estimated to be θ ≈ 1.96. The other parameters of the
model are the process mean µ̂ ≈ 2.26 and the process variance σ̂2 ≈ 1.68. These are
used in the predictor in Eq. (2.4) and the uncertainty estimator in Eq. (2.5). For a new
sample x∗ =

[
1 2 3 4

]
, the prediction is ŷ(x∗) ≈ 1.91 and the uncertainty estimate

is ŝ2(x∗) ≈ 1.62.

5.2 Combinatorial Efficient Global Optimization

With the corresponding adaptation of Kriging for combinatorial data, it is straightfor-
ward to apply the EGO algorithm (see Section 2.4) to combinatorial search spaces.
We refer to this combinatorial variant of EGO as CEGO. It is outlined in Algorithm 4.
CEGO is closely related to the earlier introduced SMBO algorithm (Algorithm 3). In
fact, the general procedure is largely identical. The differences occur mainly in the
choice of the operators: init(), model(), and optimizer().
The init() operator generates an experimental design, which is an initial set of can-
didate solutions. Since many classical design of experiment methods do not apply to
arbitrary combinatorial data structures, the design is often based on some form of ran-
dom sampling. This can be extended by choosing designs that maximize the minimum
distance between samples, to avoid closely spaced solutions in the initial design X .
This is denoted as a max-min design.
Models based on suitable kernels or distance functions for combinatorial data are gen-
erated by model(). In this thesis, the model of choice is Kriging, yet most consider-

Algorithm 4 The CEGO algorithm

1: function CEGO(f(x), init(), k(x, x′), model(), optimizer(), infill,
terminate())

2: X =init(); . create initial design with X ⊂ X
3: n = |X|;
4: for j = 1 to n do
5: yj = f(x(j)); . evaluate design
6: end for
7: y =

[
y1 . . . yn

]T;
8: while not terminate() do
9: M = model (X,y, k); . create / update the kernel-based model

10: x′ = optimizer(M ,infill); . determine promising candidates
11: y′ = f(x′); . evaluate candidate
12: X = X ∪ {x′}; . add candidate to data set

13: y =

[
y
y′

]
; . add objective function value of candidate

14: end while
15: end function
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ations may as well apply to other kernel-based models. In addition, the kernel function
k(x, x′) has to be supplied to the algorithm since it is a requirement of the model().
A suitable optimization algorithm is indicated by optimizer(). This algorithm is
often a variant of an EA (see Section 2.1) because EAs are easily adapted to arbitrary
discrete data types. While other infill criteria are possible, the optimizer()
usually maximizes the EI infill criterion.
Finally, terminate() checks whether the CEGO algorithm should stop, e.g., based
on the limited budget of evaluations of f(x) or based on a desired objective value.

Example 5.2.1. Following up on Example 5.1.1, we use the derived model to perform
a minimization of f(x). To that end, we first minimize the predicted mean of the
Kriging model. Since we deal with permutations with m = 4 elements, we can simply
use brute force to predict all 24 permutations. This yields two potential local optima,
x∗ =

[
1 2 4 3

]
and x∗ =

[
2 1 3 4

]
. Both are predicted to have exactly ŷ(x∗) =

f(x∗) = 1. This is no surprise, since both candidate solutions are part of the training
data and have already been observed.
To account for that, we could exclude the training data and select the most promising
solution from the remaining 20 candidates. Or else, we follow the concept of CEGO,
using the expected improvement criterion. With Eq. (2.6), we determine that the largest
expected improvement is estimated for x∗ =

[
1 2 3 4

]
, which is in fact the true

optimum of f(x). The complete data with all samples, predictions, and true values is
given in Table 5.1.

Table 5.1: All permutations with m = 4 elements, the predicted mean ŷ(x), the uncertainty
estimate ŝ2(x), the negative logarithm of the EI, and the underlying objective function values
f(x), based on Examples 5.1.1 and 5.2.1. The best predicted value (excluding training data),
the best function value, and the best EI are printed in bold (lower values are better).

x ŷ(x) ŝ2(x) -log(EI) f(x)

[1 2 3 4] 1.91 1.62 0.75 0.00
[1 2 4 3] 1.00 0.00 ∞ 1.00
[1 4 2 3] 2.36 1.65 1.02 2.00
[4 1 2 3] 2.24 1.69 0.93 3.00
[4 1 3 2] 2.29 1.69 0.96 4.00
[1 4 3 2] 3.00 0.00 ∞ 3.00
[1 3 4 2] 2.22 1.62 0.94 2.00
[1 3 2 4] 2.23 1.68 0.92 1.00
[3 1 2 4] 2.08 1.65 0.84 2.00
[3 1 4 2] 2.46 1.65 1.09 3.00
[3 4 1 2] 2.27 1.69 0.94 4.00
[4 3 1 2] 2.27 1.69 0.95 5.00

x ŷ(x) ŝ2(x) -log(EI) f(x)

[4 3 2 1] 2.30 1.69 0.97 6.00
[3 4 2 1] 2.28 1.69 0.96 5.00
[3 2 4 1] 4.00 0.00 ∞ 4.00
[3 2 1 4] 2.24 1.69 0.93 3.00
[2 3 1 4] 2.26 1.69 0.94 2.00
[2 3 4 1] 2.50 1.65 1.11 3.00
[2 4 3 1] 2.40 1.65 1.05 4.00
[4 2 3 1] 2.51 1.65 1.12 5.00
[4 2 1 3] 2.26 1.69 0.94 4.00
[2 4 1 3] 2.28 1.69 0.95 3.00
[2 1 4 3] 1.95 1.62 0.77 2.00
[2 1 3 4] 1.00 0.00 ∞ 1.00
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5.3 Proof of Concept
With the adaptation introduced in the previous sections, Kriging-based SMBO tech-
niques can be extended to combinatorial search spaces, and, more generally, to any
search space for which a suitable kernel is available. Since Kriging has been originally
established for continuous domains, this may seem counterintuitive. To demonstrate
that this can still be successful in practice, this section provides an empirical study: We
compare a model-free EA with a Kriging-based EGO algorithm that internally employs
the same model-free EA.
To that end, a set of artificial test-problems has been selected. These are neither fully
black-box, nor are they expensive to evaluate. This allows us to perform a sufficient
number of experiments to determine the performance of the tested algorithms.

5.3.1 Case Study: Kriging with Hamming Distance
Test Problems Test functions for two different data types were selected: permuta-
tions and binary strings. The permutation problems are listed in the following.

• One instance of the Traveling Salesperson Problem (TSP) was chosen, the bayg29
instance with 29 locations from the TSPLIB [211]. In the TSP, the cost or length
of a route through several locations is minimized. Each location has to be visited
once. Here, the route should be circular, that is, the traveler returns to the start
location after visiting all other locations.

• An instance of the Asymmetric TSP (ATSP) was generated. Therefore, a dis-
tance matrix for 20 locations was generated by uniform random sampling. In
contrast to the TSP, the cost of traveling between two locations depends on the
direction. A non-circular variant was chosen. That is, each location is visited
exactly once, without a return to the start location.

• The Quadratic Assignment Problem (QAP) instance tho30 from the QAP Li-
brary (QAPLIB) [52] was chosen. In the QAP [51] m facilities have to be as-
signed to m locations. The cost of an assignment is based on the flow between
facilities and the distance between locations. Hence, the optimization problem
is to find a permutation that minimizes the assignment cost.

• The Flow-shop Scheduling Problem (FSP) [243] concerns the sequencing of m
jobs on several machines. An optimal sequence should minimize the makespan,
that is, the production time required for the whole set of jobs. It depends on
the processing time of each job on each machine. We chose the FSP instance
reC05 [209] from the OR-Library [30].

• An instance of the single-machine total Weighted Tardiness Problem (WTP) [1]
is chosen from the OR-Library [30] (the second of length 40, i.e., wt40b). Here,
m jobs are sequenced on one machine that can handle one job at a time. The
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tardiness of a schedule for all jobs (weighted by a set of m given weights) is
minimized. The optimal tardiness depends on the given processing times and
due dates of each job.

• Moraglio et al. [181] proposed so-called unimodal (UNI) problems as simple
and transparent test problems for combinatorial surrogate models. In the UNI
problems, the distance of a candidate solution to some reference solution has
to be minimized. For permutations, the distance to the fixed reference per-
mutation xref =

[
1 2 . . . m

]
has to be minimized. This is identical to the

test function used in Examples 5.1.1 and 5.2.1. That is, the objective function
is f(x) = d(x, xref). The individual problem instances chosen for this study
are pUNIH30 (based on Hamming distance), pUNIS30 (swap distance), and
pUNII30 (interchange distance). Here, the number 30 indicates the number of
elements in the permutation, m.

For the experiments with binary strings, we chose the following problem instances.

• Three NK-Landscape instances were generated. NK-Landscapes (NKL) are
fitness landscapes based on bit strings. They have been proposed by Kauff-
man [146]. Here, the fitness of a string is the sum of contributions of all N = m
bits, each affected by K = nbit other bits. For each bit, a function gi(x) assigns
a real-valued weight to each possible combination of the bit and its neighbors.
The weights are typically uniform random samples from the interval [0, 1]. In
the present work, the nbit bits that impact the contribution of the i-th bit xi are
the neighbors given by the sequence

[
xi+1 . . . xi+nbit

]
. The three generated

instances are N30K2, N30K4 and N30K8, with m = 30 and nbit ∈ {2, 4, 8}.

• Two Max-Cut problems were generated [103], one with m = 30 (MC30) and
one withm = 40 (MC40) bits. The Max-Cut problem is a graph problem, where
the goal is to cut a graph into two subgraphs, such that the number of edges
between them is maximal. Each bit indicates to which subgraph a specific node
belongs.

• Three unimodal problems (UNI) were generated, similarly to the permutation
case. The individual problem instances are bUNIH30 (binary, Hamming dis-
tance), bUNILE30 (binary, Levenshtein distance), and bUNILC30 (binary, Long-
est Common Substring distance (LCStr)).

An overview of all these problem instances is given in Table 5.2.

Model-Free Optimization Settings As a baseline, we used Random Search (RS)
and a model-free EA to solve the test problem instances. The EA is based on the de-
scriptions in Section 2.1. Details of the variation operators can be found in Appendix C.
The following configuration was employed:
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Table 5.2: Overview of the problem instances used in the experiments. The problems are
intended for a first test of the applicability of SMBO to combinatorial problems.

data type problem instance dimensionality

permutation TSP bayg29 29
permutation ATSP atsp20 20
permutation QAP tho30 30
permutation WT wt40b 40
permutation FSP reC05 20
permutation UNI pUNIH30 30
permutation UNI pUNIS30 30
permutation UNI pUNII30 30

binary string NKL N30K2 30
binary string NKL N30K4 30
binary string NKL N30K8 30
binary string MC MC30 30
binary string MC MC40 40
binary string UNI bUNIH30 30
binary string UNI bUNILE30 30
binary string UNI bUNILC30 30
binary string UNI pUNII30 30

• budget: The budget of fitness function evaluations was set to 100, under the
artificial assumption that evaluations are expensive.

• replications: Each algorithm run was repeated 20 times, with different random
number generator seeds.

• archiving: If the EA suggested a solution that had already been tested during
that specific run, the fitness function was not evaluated. Instead, the fitness was
read from an archive of previous evaluations.

• mutation: In case of the permutation problems, swap, interchange, insert and
reversal mutation operators were used (see Section C.1.1). In case of the binary
strings, the chosen mutation operators were block inversion, cycle and bit flip
(see Section C.2.1). The mutation rate and the selection of the mutation operator
were controlled in a self-adaptive way (see Algorithm 2 in Section 2.1). Initially,
the mutation rate was set to rmut = 1/m. The operators were randomly initialized
for each individual in the initial population. The parameters τ and ps of the self-
adaptation scheme were determined with a parameter tuning study that was part
of our experiments. We tested the values τ ∈ {1/(2

√
2), 1/

√
2, 2/
√

2} and
ps ∈ {0.2, 0.5, 0.8}.
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• recombination: Like the mutation operators, the recombination operators were
randomly initialized and evolved in a self-adaptive fashion. For permutations,
the potential operators were cycle crossover, order crossover, position-based
crossover, and alternating position crossover (see Section C.1.2). For binary
strings, we chose the operators uniform crossover, 1-point crossover, 2-point
crossover, and AND-crossover (see Section C.2.2).

• selection: Two selection schemes were available, tournament selection or trun-
cation selection. Truncation selection deterministically selects the best subset,
while tournament selection is a probabilistic operation based on fitness ranks [82].
Tournament selection was configured to use a tournament probability of 0.8 and
a tournament size of one-half of the population size npop. Both selection proce-
dures were tested separately in the experiments.

• population size: The population size npop was also investigated in the parameter
tuning study, during our experiments. We tested the values npop ∈ {5, 10, 20}.

• number of offspring: The number of offspring was set to noff =
⌊
0.5 npop

⌋
(brackets denote the floor function).

Model-based Optimization Settings The CEGO algorithm (see Algorithm 4) was
configured as follows.

• budget: The objective function evaluation budget was set to 100.

• replications: Each run was repeated 20 times.

• initial design: The CEGO algorithm was configured to create an initial max-min
design of 10 samples. The max-min design was created as follows. 100 different
sets of 10 samples were created by uniform random sampling. Of these 100 sets,
the one with the largest minimum pairwise Hamming distance was selected.

• model: Kriging was used as a surrogate model, with the kernel k(x, x′) =
exp(−θd(x, x′)). Here, d(x, x′) was the Hamming distance (that is, the number
of elements that are not equal in x and x′). The nugget effect was not used in the
model (η = 0). The Dividing Rectangles (DIRECT) algorithm [139] was chosen
to optimize the model parameter θ during MLE. The employed DIRECT imple-
mentation is part of the NLopt library. We used the NLOPT_GN_DIRECT_L
variant [138, 94]. Two hundred likelihood evaluations were allowed. A relative
tolerance of 1e−6 was used to detect earlier convergence.

• optimizer: An EA was used to optimize the expected improvement criterion
provided by the Kriging model. Largely, the EA had identical settings as the
model-free EA. The budget was enlarged to 5000 evaluations of the surrogate
model (in each CEGO iteration) since the model evaluations were assumed to be
considerably cheaper than the objective function evaluations. Due to the larger
number of evaluations, no archive was used.
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Parameter tuning To allow for a fair comparison of CEGO and the model-free
EA, a study on the effect of algorithm parameters was performed. We investigated
the sensitivity to some of the algorithms’ most important parameters. To that end,
the following parameters of the EA were tested: the self-adaptation parameters (τ ∈
{1/(2

√
2), 1/

√
2, 2/
√

2} and ps ∈ {0.2, 0.5, 0.8}), the choice of selection operator
(tournament or truncation), and the population size (npop ∈ {5, 10, 20}). All combina-
tions of these parameter settings were tested, for the model-free and the model-based
optimization algorithm.

5.3.2 Results and Analysis
For the analysis, we followed the procedure described in Appendix A.

Visual Analysis Firstly, we performed an exploratory, visual analysis of the results,
focusing on the best performing algorithm configurations. To that end, the algorithm
configuration with the best median performance was selected for each test instance.
The respective algorithm configurations are listed in Table 5.3 and their performances
are compared in a box plot in Fig. 5.1. In terms of algorithm parameters, especially the
model-free EA seemed to perform better with tournament selection, and it preferred
smaller population sizes. Furthermore, the visual inspection seemed to confirm our
expectations: In most cases, CEGO outperformed the model-free EA.

Table 5.3: Parameter configurations of the EA and CEGO (with Hamming distance) with
best median performance for each problem instance. Note that these choices were sometimes
arbitrary since the attained objective function value was insensitive to the parameters.

CEGO EA
ps τ selection npop ps τ selection npop instance

0.2 0.35 truncation 20 0.2 1.41 tournament 5 N30K2
0.2 1.41 tournament 10 0.5 0.35 tournament 5 N30K4
0.5 1.41 truncation 20 0.5 0.35 tournament 5 N30K8
0.8 1.41 tournament 20 0.2 0.35 tournament 10 MC30
0.5 0.71 truncation 10 0.5 0.35 tournament 10 MC40
0.2 0.35 tournament 5 0.2 0.71 tournament 5 bUNIH30
0.2 0.71 tournament 5 0.5 0.71 tournament 5 bUNILE30
0.2 0.71 truncation 5 0.2 0.35 tournament 5 bUNILC30

0.2 0.35 tournament 10 0.5 0.35 tournament 10 tho30
0.5 1.41 tournament 20 0.8 0.35 tournament 10 reC05
0.2 0.35 tournament 20 0.2 0.71 tournament 10 bayg29
0.5 1.41 tournament 20 0.5 0.35 tournament 5 atsp20
0.2 0.71 tournament 5 0.8 0.71 truncation 5 wt40b
0.5 1.41 truncation 5 0.2 0.35 tournament 5 pUNIH30
0.2 1.41 tournament 10 0.2 0.35 tournament 5 pUNIS30
0.2 0.71 truncation 5 0.2 0.71 tournament 5 pUNII30
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Figure 5.1: Comparing the best configurations (according to median performance) of random
search (RS), a model-free EA, and CEGO with Hamming distance. The x-axis shows the best-
observed values of each run. Lower values are better. The dark gray boxes give the test problem
IDs.

Statistical Analysis Next, we trained a linear regression model to determine the in-
fluence of the algorithm parameters. Performance was measured by computing the gap
to the best-observed objective function value for each problem instance.
Separate linear models were trained for each Algorithm (EA, CEGO) and each data
type (permutation, binary). The models included main effects for the algorithm pa-
rameters as well as the problem instances. An additional model included effects for
the algorithm and the data type, based on the complete data set.
The residuals of the resulting models did not seem to fit to the assumptions of ho-
moscedasticity and normality. This was mostly remedied by using weighted least
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squares instead of ordinary least squares (see Appendix A). That is, the weighted least
squares approach was used to train the linear regression model, where the weights were
derived from the variances estimated from the replications of each algorithm run. Fig-
ure 5.2 compares QQ-plots of these linear regression models fitted with ordinary and
weighted least squares. Clearly, weighted least squares was to be preferred.
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Figure 5.2: QQ Plots for two of the linear regression models that are listed in Table 5.4, relat-
ing algorithm parameters to optimization performance. The upper row shows the model for the
subset of permutation problems, the lower model concerns all experiments (permutation and
binary). Each case is depicted once with ordinary least squares (left) and once with weighted
least squares (right).

The coefficients and corresponding p-values of the models (weighted least squares) are
depicted in Table 5.4. The model-based CEGO runs performed better in general (lower
intercepts). This was confirmed by the main effect of the optimizer contrast in the en-
compassing model (last row of Table 5.4). The positive value of that effect implies that
changing from the model-based CEGO to the model-free EA decreased performance.
Of all other parameters, the selection process (column: truncation) usually had the
largest effect. Tournament selection generally performed better than truncation selec-
tion (positive contrast effect). To a lesser amount, the parameters p , τ and npop seemed
to yield better performance when set to lower values (effects are positive, if signifi-
cant). A preference for small population sizes npop was expected, due to the restricted
number of objective function evaluations.
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Table 5.4: Coefficients of linear models, with p-values in brackets. The modeled variable is
the optimization performance of two algorithms (EA, CEGO), tested on two problem classes
(binary, permutation). The model shown in the last row includes the choice of optimizer as an
effect. The columns optimizer and selection represent contrasts. That is, the column optimizer
shows the effect of changing from CEGO to the model-free EA. The column selection shows the
effect of changing from tournament to truncation. The effects of different problem instances are
included in the model, but are not shown for the sake of brevity. The last column provides the
adjusted coefficient of determination, a measure of model quality [154].

(intercept) optimizer ps τ selection npop r2adj.

bin-EA 0.120 (0.00) / 0.003 (0.05) 0.007 (0.00) 0.037 (0.00) 0.002 (0.00) 0.89
bin-CEGO 0.000 (0.82) / 0.001 (0.41) 0.000 (0.60) 0.000 (0.80) 0.000 (0.83) 0.75

per-EA 3.228 (0.00) / 0.000 (0.89) 0.005 (0.00) 0.048 (0.00) 0.002 (0.00) 0.96
per-CEGO 1.649 (0.00) / 0.040 (0.00) -0.003 (0.40) 0.068 (0.00) 0.000 (0.06) 0.84

all 2.671 (0.00) 0.066 (0.00) 0.006 (0.00) 0.003 (0.00) 0.020 (0.00) 0.001 (0.00) 0.92

In case of the binary runs with CEGO (second row of Table 5.4), the choice of pa-
rameters seemed to play little role in the determination of algorithm performance: All
main effects received large p-values. This observation may be due to a poor model (the
lowest of all r2adj. values). Another reason may be that the binary problems mostly dealt
with smaller search spaces than the permutation problems. Since the budgets were
identical, this implies that the binary optimization problems might have been easier
to solve. Hence, even a model-based EA with sub-optimal configuration could per-
form reasonably well, so that the parameters of the underlying EA had little impact on
the performance. In fact, this may also explain the poor quality of the linear analysis
model, since several binary runs converged to the optimum, and produced ties in the
observed performances.

5.3.3 Case Study: Changing the Distance Function
SMBO seemed to be quite successful in most of the experiments. As an exception, no
differences could be observed, e.g., for bUNILC30 (binary), reC05 (permutation) and
wt40b (permutation). One potential explanation is that the Hamming distance is not
the ideal distance measure for these problems. For example, bUNILC30 is based on
the LCStr distance. At least for this case, using the LCStr distance in the model can be
expected perform better. Therefore, the experiments with the model-based approaches
were repeated, employing the four distance measures that were also employed in the
UNI problem instances.
Figure 5.3 shows a subset of the results. Clearly, the choice of the distance measure was
crucial. The figure shows that the LCStr distance performed best on bUNILC30. This
issue is even more obvious for the swap distance on the pUNIS30 instance. Selecting
the wrong distance caused CEGO to perform equal to or worse than the model-free EA.
While the choice of distance is obvious for these simple unimodal problems, it may not
be obvious for some black-box real-world application. Hence, we need a method that
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selects the right kernel.
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Figure 5.3: Comparing the best configurations (according to median performance) of a model-
free EA, random search (RS), and CEGO with different distance functions. The x-axis shows
the best-observed values of each run. Lower values are better, the dark gray boxes contain test
problem IDs.

5.4 Conclusions
In this chapter, we discussed how SMBO could be extended to combinatorial or dis-
crete search spaces.

Answer 5.1. Applicability. Can SMBO algorithms like EGO be applied to combina-
torial or discrete search spaces?

Yes, if appropriate kernels are available. The Kriging variants we discuss only rely
on correlations, and hence do not require the input data to be of a specific data type.

Answer 5.2. Comparison. How well do the respective algorithms compare to model-
free optimization techniques?

In most of our experiments, the model-based CEGO algorithm clearly outperformed
the model-free EA. However, a success may depend on the selection of a good ker-
nel.

Our results raise two important follow-up questions. Firstly, we need an approach
that is able to handle multiple kernels or distances. This necessity became obvious
in Section 5.3.3. In the corresponding experiments, the selection of the kernel was
crucial: A model based on the right kernel yielded the best performance, whereas other
kernels sometimes produced results that are no better than random search. Hence, we
need approaches to effectively select or combine kernels. This issue is discussed in the
following Chapter 6.
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Secondly, kernels for Kriging models should usually be PSD, as described in Sec-
tion 2.3.1 and Section 4.4. Thus, we should be able to determine whether a kernel is
definite or not. This is dealt with in Chapter 7. We discuss how Kriging can employ
indefinite kernels in Chapter 8.
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Chapter 6

How to Find the Right Kernel

The main modeling technique employed in this thesis, i.e., Kriging, relies on differ-
ent measures of (dis-)similarity or kernels. Often, several notions of (dis-)similarity
are conceivable. In practice, it may be unclear which measure works best. Clearly,
the selection of the right kernel has a major impact on model quality. This was also
demonstrated in the results presented in Section 5.3.3. Two questions result from this.

Question 6.1. Selection. How can the best kernel be chosen without prior knowledge?

Question 6.2. Combination. Can several kernels be combined?

This chapter tries to provide answers to these questions. In that sense, methods for the
selection and combination of kernels or distances are described. We use the term multi-
kernel method to indicate methods that either choose or combine several kernels. In
contrast, some fixed kernel that has been chosen a priori is referred to as single-kernel.

These ideas are closely related to the concepts of multiple kernel learning [173] and
metric learning [31]. Multiple kernel learning has already received much attention,
especially in the context of support vector machines. These approaches consider mul-
tiple kernels at once. An alternative to combining existing kernels is to learn new ones
from scratch. For instance, new kernels can be assembled from simple building blocks
via genetic programming, as discussed by Gagné et al. [95] and Koch et al. [150]. In
this chapter, we will focus on dealing with existing kernels.
Gönen and Alpaydı [173] provide an overview of multiple kernel learning algorithms.
They distinguish algorithms by six different key properties:

The following sections are partially based on “Distance Measures for Permutations in Com-
binatorial Efficient Global Optimization” by Zaefferer et al. [271]. Some text elements have
been adopted verbatim from the original contribution. The content of the publication has been
extended significantly. Firstly, several additional methods for dealing with multiple kernels
are discussed, including a more comprehensive explanation of the original ideas. Secondly, a
more thorough experimental study now includes these methods as well as additional distance
measures and test functions. Furthermore, the results are subject to a more in-depth analysis.
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• Type of learning method: fixed rules, heuristic approaches, optimization ap-
proaches, Bayesian approaches, and boosting (ensemble) approaches.

• Functional form of the combination: linear combinations, non-linear combina-
tions, and data-dependent combination.

• Target function: Similarity-based, structural risk, and Bayesian.

• Training method: How parameters of the combination function are determined,
in a one-step or iterative fashion.

• Base models: Kriging, support vector machines, or other kernel-based learning
methods.

• Computational complexity.

The methods in the focus of this chapter can be categorized with respect to type as
heuristic approaches, optimization approaches and Bayesian approaches. Instead of
boosting, stacked generalization (stacking) is proposed as an additional ensemble tech-
nique for combining learners based on different kernels. Furthermore, we discuss an
approach based on the superposition of individual Kriging models.
Regarding the functional form, we stick to linear combinations. One exception is the
superposition approach, which could also be classified as data-dependent. The selec-
tion of a single kernel can be viewed as an extreme case of a linear combination, where
all but one weight are zero. With respect to target functions, we focus on similarity-
based and Bayesian approaches. This chapter mostly deals with Kriging models that
are trained in a one-step procedure, but it is straightforward to apply most of the dis-
cussed approaches to arbitrary other models.
Our contributions are:

• We consider selection as well as combination methods.

• We focus on kernels with a distance interpretation.

• We suggest different variants to combine or select kernels based on correlation,
likelihood, linearity, ensemble methods, and superposition.

• We account for our main goal, which is optimization.

• To generate kernel combinations that are interpretable and allow for an efficient
implementation, we propose to use linear models with variable selection and
non-negative coefficients.

• Based on numerical experiments, we investigate how multi-kernel methods per-
form in the context of combinatorial SMBO.
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With respect to the last point, this chapter provides an empirical study for permuta-
tion problems. This choice is made due to the large number of problems that involve
permutation representations [5]. One frequent example are production processes that
have to be scheduled such that processing times or other costs are minimal. In addition
to the large number of applications, permutations also give rise to numerous distance
measures, which can be employed in a kernel, see Appendix B. Hence, this presents
an excellent test case for the questions that have been raised.

6.1 Selecting Kernels

The methods in this section intend to select a kernel from a set of kernels. The selected
kernel has to be distinguished from other, sub-optimal kernels that are less suited for
the given problem. Our methods are data-driven, i.e., based on a set of given training
data. We do not consider cases where prior knowledge is used to select a kernel.
A data-dependent kernel selection process cannot be perfectly accurate. Its perfor-
mance depends on the training data as well as the accuracy of the selection procedure.
A wrong decision may occur, especially while data is still very sparse at the beginning
of an SMBO run. Therefore, a data-dependent kernel selection process may be worse
than a model based on the single best kernel, for a specific data set. However, this
single best kernel is usually not known in advance.
Even more, a single-best kernel may be outperformed by kernel selection if the behav-
ior of the model becomes more dynamic. That means, different kernels may work best
in different phases of an SMBO run. For example, a specific kernel may work best for
sparse data (start of the run), while another kernel may be better for increasingly dense
data sets (near the end of the run).
In the following, we introduce different selection methods based on correlation, max-
imum likelihood, and cross-validated errors. Before we come to these more complex
kernel selection methods, we require a simple baseline against which sophisticated
methods can be compared.

6.1.1 Random Selection

We suggest uniform random selection as a baseline for our experiments. Random
selection implies that whenever a model is trained, the employed kernel is chosen ran-
domly from the set of available kernels. This baseline may even perform satisfactory
in some cases, e.g., when the number of available kernels is rather small. Since the op-
timization algorithms we employ are iterative procedures, it may be sufficient to select
the correct kernel occasionally. We refer to this simple procedure as selectRandom.
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6.1.2 Selection with Correlation Measures
A straightforward idea to deal with multiple kernels is to select one kernel based on
a measure of correlation between kernel values and observed values. For the sake of
simplicity, we mostly employ Pearson correlation. Other measures, such as the rank-
based Spearman correlation [79], could be used to replace Pearson correlation in the
following approaches.
The methods discussed here are similar to the least squares fitting of variogram mod-
els [69]. The main difference is that we use correlation instead of the sum of squared
deviations. In addition, variogram models usually consider the fitting of kernel param-
eters rather than selecting from a discrete set of kernels.

Fitness Distance Correlation When the selection of kernels can be simplified to a
selection of a distance measure, a very intuitive and conceptually simple idea may be
used: Fitness Distance Correlation (FDC) [141]. FDC evaluates the linear Pearson
correlation between the distances to the global optimum and the respective fitness val-
ues. That means, given n candidate solutions with objective values y =

[
y1 . . . yn

]
and distances to the optimum d =

[
d1 . . . dn

]
, with respective means and standard

deviations (ȳ, d̄, σy, σd) the FDC is

FDC =
1

n−1
∑n

i=1(yi − ȳ)(di − d̄)

σyσd

This definition varies slightly in the numerator, compared to the definition by Jones and
Forrest [141]. It uses the sample covariance with 1/(n − 1) instead of the population
covariance with 1/n.
When the global optimum is unknown, the local FDC can be computed instead. It uses
the best-observed solution instead of the global optimum [144]. Since we deal with
black-box problems and do not know the global optimum, we use the local FDC.
The FDC has previously been used to analyze fitness landscapes. In the context of
minimization, a problem is considered easy if small distances to the optimum coin-
cide with low fitness values, i.e., positive FDC. This is because positive FDC implies
smoothness of the fitness landscape, at least in the direction of the optimum. In other
words, candidates close to the optimum do not have poor fitness values. It is simple
to extend this idea to the selection of a distance measure for a model. The distance
measure with the largest FDC value is the most promising choice, as it perceives a
smoother landscape.
Previous work on fitness landscape analysis advises caution since FDC was shown
to be potentially misleading [7]. Still, the FDC is comparatively simple to compute,
independent of the chosen surrogate model. Whether the potentially misleading in-
formation actually translates into decreased performance for our use case needs to be
investigated.
Overall, the FDC selection procedure works as follows. A data set of n ∈ N pairs
{x(i), yi} with i = 1, ..., n is given, as well as a set of r ∈ N distance measures
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dj(x, x
′) with j=1, ..., r. First, the candidate solution xopt that yields the minimal

objective value yopt = min(y) is chosen from the data set. Next, we compute the
distances d =

[
dj(x

(1), xopt) . . . dj(x
(n), xopt)

]
and the corresponding correlation

FDCj = corr(d,y). Finally, the distance measure dj(x, x
′) that yielded the maximal

FDCj is chosen.
Clearly, the situation becomes slightly more complex when the distance measures have
parameters. Then, the selection process can be redefined as an optimization problem
with respect to the parameters: for each distance measure, the parameters that maxi-
mize FDC are determined. Then, the distance that yields the maximal FDC is selected.
We refer to the FDC-based selection procedure as selectFDC.

Fitness-Difference Distance Correlation FDC considers the distances to a refer-
ence solution, usually the best-observed solution. Since the goal is to use the resulting
model for optimization, this may be reasonable. We are interested in using our model
to find the optimum, so the distances in promising directions (i.e., towards optimal so-
lutions) are of great interest. In other words, the FDC measure reflects the goal of the
optimization process.
However, a model like Kriging considers all pairwise distances during training, regard-
less of any reference solutions. Thus, parts of the information used by the model are
not considered by the FDC criterion.
To alleviate this, all pairwise differences should be considered during the selection pro-
cedure. This idea can be used to develop an alternative to FDC-based selection, which
we refer to as Fitness-Difference Distance Correlation (FDDC). Here, we calculate all
pairwise distances and all pairwise differences in fitness. Then, the Pearson correlation
of these distances and the fitness-differences is calculated. The resulting FDDC values
are used just like the FDC values.
In summary, we start by computing all differences between the observations y, i.e.,
∆yil = |yi − yl|, for all i, l ∈ {1, ..., n}. Next, for each distance j, dil = dj(x

(i), x(l))
and FDDCj = corr(d,∆y) are computed. Finally, the distance measure dj(x, x

′)
that yields the maximal FDDCj is chosen. We refer to this selection procedure as
selectFDDC.

6.1.3 Selection with Maximum Likelihood Estimation

While the structure of common Kriging kernels for real-valued samples, e.g., k(x, x′) =
exp(−θ|x− x′|p), is indeed fixed, the respective kernels are not completely inflexible.
Rather, the exact shape can be changed via the parameters, e.g., θ or p. The config-
uration of parameters such as p may be included in the MLE process during model
training.
We can exploit this idea when we are faced with selecting different kernels. A choice
between different kernels can be understood as a categorical parameter of an encom-
passing kernel. For the case where we use an exponential kernel k(x, x′) with a number
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of potential distance measures di(x, x
′), this idea can be presented as follows,

k(x, x′) = exp(−θdγ(x, x
′)).

Here, the parameter γ decides which of the available measures is selected. This new
categorical parameter can be optimized alongside the other kernel parameters during
MLE. This could be done with an appropriate mixed-integer optimization algorithm
such as the MIES [84, 163]. Alternatively, for the sake of simplicity, the usual model
training procedure can be performed for each kernel separately. Afterwards, the kernel
that yielded the largest likelihood value is chosen. In terms of the survey of Gönen
and Alpaydı [173], this MLE-based approach could be categorized as a Bayesian or
optimization approach to multiple kernel learning. We refer to this selection procedure
as selectMLE.
In comparison to other selection approaches, the MLE-based selection has the ad-
vantage that it is natural to Kriging. It is easily integrated into standard frameworks.
Further, it is also straightforward to optimize additional parameters of the distance
measure or kernel function in the MLE procedure. A drawback of this approach is
the fact that it cannot be applied to arbitrary models, since it relies on some form of
stochastic model where likelihoods can be computed.

6.1.4 Selection with Cross-Validation
Different kernels may as well be chosen by selecting the one that yields a minimal,
cross-validated error. Cross-validation (CV) is a standard procedure for model evalua-
tion and selection in the field of machine learning [132]. It is used to approximate how
well a model performs on unseen data.
We use k-fold CV. Here, the training data set is randomly split into k non-overlapping
subsets of equal size. The model is built k times, each time excluding a different subset,
using the remaining data for training. The model’s error is estimated with the excluded
data. CV has the advantage of being applicable to any model type. It has the drawback
of potentially increasing the computational effort for model training: Models have to
be trained for every tested kernel and all k subsets of the data. We refer to this selection
procedure as selectCV.

6.2 Combining Kernels
Selecting a kernel may be a good solution in some cases. In other cases, there may
be no single, best performing kernel. Rather, several kernels could contribute com-
plementary information with regard to the similarity of solutions. In such a case, a
combination of kernels is more promising than selection.
A trivial example are mixed-integer problems. Here, different distance measures can be
used for the continuous and the categorical parameters, e.g., Euclidean and Hamming
distance. Clearly, it makes little sense to choose between them. Each distance contains
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information about a different set of variables. In previous works by Hutter [126] and Li
et al. [164], the respective distance measures were hence combined. Li et al. [164] used
a fixed rule for combination. They combined the individual measures by computing
the square root of their sums. Hutter [126] proposed to use a weighted sum of the
individual distances, with weights determined by MLE.
In this work, we also deal with weighted sums of individual distance measures, al-
though not restricted to learning the weights via MLE. Weighted sums have the advan-
tage of being interpretable and relatively simple to compute. In our use case, they also
avoid potential problems with respect to definiteness since products of PSD kernels are
also PSD1. Definiteness may become a problem if more complex, nonlinear combina-
tions are considered. Weighted sums of kernels are among the more frequently used
methods in multiple kernel learning [173].
In the following, we propose four methods for combining distance measures or kernels.
Three of them can be linked to the selection methods earlier described in Section 6.1.

• The linear regression approach described in Section 6.2.1 is connected to the
correlation measures from Section 6.1.2.

• The MLE-based combination in Section 6.2.2 corresponds to the MLE-based
selection from Section 6.1.3.

• Finally, the stacked generalization approach in Section 6.2.3 is analogous to the
CV-based selection discussed in Section 6.1.4.

In addition, we consider a combination based on the superposition of Kriging models
in Section 6.2.4.

6.2.1 Weighted Sum via Linear Regression
The methods for kernel selection in Section 6.1.2 exploit a potential linear relationship
between fitness-differences and distances to select a distance measure. We propose to
use the same information to combine different distance measures.
Similarly to selectFDDC, the idea is to first compute all pairwise differences in the
objective value ∆yil = |yi − yl| as well as all pairwise distances dil,j = dj(x

(i), x(l))
(for each j). Then, a linear regression model can be built to learn the relationship
between ∆yil and dil,j:

∆yil =
∑
j

βjdil,j + εil (6.1)

with εil ∼ N(0, σ2). Correspondingly, the combined distance measure is then

d∗(x, x
′) =

∑
j

βjdj(x, x
′) (6.2)

1 Since we usually consider exponential kernels in this thesis, the weighted sum of the CNSD dis-
tances implies a product of the encompassing PSD kernels, e.g., exp

(
−θ1d1(x, x

′)− θ2d2(x, x
′)
)
=

exp
(
−θ1d1(x, x

′)
)
exp

(
−θ2d2(x, x

′)
)
.
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Intuitively, the combined distance should be zero if all individual distances are zero.
Hence, the linear model in Eq. (6.1) has no intercept term. Furthermore, the coef-
ficients βj can be understood to encode the relevance of each single distance mea-
sure. Large βj imply that the j-th distance has a strong linear relationship with the
fitness-differences. Otherwise, distances that have no observable effect should receive
coefficients close to zero.
Clearly, it is desirable that the coefficients βj are non-negative. This has three reasons.
Firstly, negative βj would deteriorate the interpretability of the model. Secondly, the
combined distance measure could otherwise yield negative distance values. Thirdly,
the combined measure could potentially become indefinite. Therefore, the coefficients
in Eq. (6.1) are constrained with βj ≥ 0.
This linear modeling approach can be used regardless of the chosen surrogate model
(e.g., Kriging) that employs the combined distance measure. It is also fairly simple
to compute. One decisive drawback in comparison to the selection approaches is the
additional computational effort: The resulting model predictor requires the evaluation
of all distance measures (e.g., for prediction), rather than just the one that was selected.
To partially alleviate this last issue, we suggest enabling the model to exclude distances
that do not contribute relevant information. That means, some coefficients βj should
be set to exactly zero. The corresponding distance measures can be disregarded for
prediction. To achieve this, we can use the least absolute shrinkage and selection
operator (LASSO), which comprehends a variable selection procedure [247]. We refer
to our approach of combining kernels with linear regression as
combineLinear.
This process could be extended with non-linear regression models. However, great
care would have to be taken, to avoid issues such as indefiniteness of the resulting
combination.
A very similar, classical approach from the field of stochastic process modeling is
known as Minimum Norm Quadratic (MINQ) estimation [69]. MINQ estimation
attempts to learn linear combinations of covariance matrices via a least-squares ap-
proach.

6.2.2 Weighted Sum via MLE
A weighted sum of distance functions as described in Eq. (6.2) can also be generated
with MLE. To that end, the respective distance measures have to be embedded into a
combined kernel, e.g.,

k∗(x, x
′) = exp(−

∑
j

βjdj(x, x
′)), (6.3)

which is subsequently subject to MLE. That means, the weights βj are kernel param-
eters that are optimized numerically via MLE (cf. Section 2.3.1). In terms of the
categorization of Gönen and Alpaydı [173], this combination approach can be denoted
as Bayesian or optimization with a Bayesian target function.
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The structure of the combined kernel in Eq. (6.3) could also be subject to optimization.
However, choosing some standard structure like the exponential kernel is recommend-
able, to avoid encumbering the MLE procedure with too many parameters. This also
extends to the number of different distance measures dj(x, x

′): Weeding out unlikely
candidates where possible (e.g., via some kind of expert knowledge) reduces the bur-
den of the MLE procedure and enables to find better weights. We refer to the approach
of combining kernels by MLE as combineMLE.

6.2.3 Weighted Sum via Stacking

Similar to the CV-based selection described in Section 6.1.4, a k-fold segmentation of
the training data can also be used to learn how to correct the corresponding generaliza-
tion error of different candidate models. Stacked generalization or stacking [261, 22]
uses such an approach, to combine different models (or learners) in an ensemble.
Stacking was recently suggested for combining diverse surrogate models for optimiza-
tion [22].
For two reasons, stacking is the most expensive of our combination methods. Firstly, it
combines models rather than just kernels or distance measures. Secondly, like k-fold
CV, stacking requires to fit each model k times.
Loosely following the descriptions by Bartz-Beielstein [22], our stacking implemen-
tation is depicted in Fig. 6.1. Firstly, the training data is randomly split into k subsets
of equal size. For each subset i = 1, . . . , k and each distance measure dj(x, x

′) (or
else, kernel), a model is built excluding the corresponding subset of the training data
(hold-out data). These models are denoted as level-0 models. They are used to predict
the hold-out data. The resulting predictions are the input of an encompassing model,
denoted as level-1 model. The level-1 model attempts to correct the level-0 predic-
tions. When predicting new data, the stacked ensemble first predicts with all level-0
models, which have been re-trained with the complete training data. Then, we use
the individual predictions as inputs of the level-1 model, which produces the ensemble
prediction.
In this study, the level-0 models are Kriging models with different kernels. For the
level-1 model, we chose a linear model with non-negative coefficients and no inter-
cept, similarly to the approach described in Section 6.2.1. Since complete models are
combined instead of kernels, negative distances or indefiniteness are not an issue (un-
less the underlying kernels themselves are indefinite). Still, non-negative coefficients
are recommendable, due to better interpretability of the resulting ensemble. In addi-
tion, linear level-1 models with non-negative coefficients have been reported to work
well in stacking ensembles [45, 159].
Furthermore, we use LASSO for variable selection, to exclude redundant or irrele-
vant models. Due to the cost of combining many individual models via stacking, the
LASSO variable selection is especially important to reduce the computational effort of
the ensemble predictor.



70 6.2. COMBINING KERNELS

X1 ... Xkcomplete data set X

all observations y y1 ... yk

k subsets of the training data

train r level-0 models 
on each subset

m11=M1(X-1,y-1) ... m1k=M1(X-k,y-k)

...predict 
level-0 models

y11 =m11(X1)^

train the 
level-1 model

... ... ...

mr1=Mr(X-1,y-1) ... mrk=Mr(X-k,y-k)

... ... yrk =mrk(Xk)^

...

mL1=ML1([y1  , … ,yr],y)^ ^

m1=M1(X,y)

...

mr=Mr(X,y)

train r level-0 
models on 

complete data

ensemble predictor 
for new data x* y(x*)=mL1([ m1(x*) , … , mr(x*) ])^

Figure 6.1: Training and prediction of a stacking ensemble with k data subsets, and r different
level-1 models (e.g., using r different kernels). Mi(x, y) indicates a training procedure with
input data x and output y for an individual model, and mi(x) is the predictor of a trained
instance of the model. Data indices are used somewhat differently than in the rest of this
thesis: X−1 and y−1 indicates the complete data, excluding the subsets X1 and y1.

For this specific level-1 model, the combined predictor of the ensemble is

ŷensemble(x
∗) =

r∑
j=1

βj ŷj(x
∗),

where ŷj(x) is the predictor from Eq. (2.4) based on the distance function (or kernel)
j, and βj are the non-negative coefficients of a linear model with LASSO.
Stacking combines models rather than kernels. This causes a problem that is not
present in the approaches that combine kernels. When the ensemble model is em-
ployed in the CEGO framework, we require an uncertainty estimate to compute the
expected improvement criterion, see Section 2.4. If the level-1 model is some complex
non-linear learner, determining the ensemble uncertainty may be quite complex or even
infeasible. Since we use a linear, non-negative combination, we can use this structure
to combine the individual uncertainties in a straightforward way. First, we assume that
the predictive distributions from all level-0 models are not correlated to each other.
Whether this is always true is doubtful, but the assumption is nevertheless useful as the
correlations between level-0 models are unknown to us. We exploit that the variance of
the sum of uncorrelated random variables z1 and z2 is var(z1 +z2) = var(z1)+var(z2),
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and var(βz) = β2var(z). Thus, the uncertainty of the ensemble is estimated to be

ŝ2ensemble(x
∗) =

r∑
j=1

β2
j ŝ

2
j(x
∗).

We refer to the approach of combining kernels via stacking as combineStack.
Other ensemble methods could be used, such as bagging or boosting [132]. We decided
to use stacking because i) it is easy to interpret the linear level-1 model in terms of each
kernel’s contribution to the ensemble, ii) the uncertainty estimate is straightforward
to compute, and iii) a combination via stacking is analogous to selection via cross-
validation.

6.2.4 Superposition of Kriging Models
Another approach that combines models rather than kernels is the superposition of
Kriging models. This approach has previously been used to combine models built
from data subsets, to reduce the computational complexity of the model building pro-
cedure [250, 258]. The resulting superposition is a weighted sum of the individual
models, but with weights that depend on the location in the search space. The weights
are based on the uncertainty estimates of each individual model. That means, a model
that is very certain about a specific sample has more impact on the prediction than a
model that is rather uncertain. Following the distinctions in the survey by Gönen and
Alpaydı [173], this could be termed a linear, data-dependent combination. The predic-
tor and uncertainty estimates of the resulting combination can be written as [250, 258]:

ŷsuper(x
∗) =

r∑
j=1

βj(x
∗)ŷj(x

∗),

ŝ2super(x
∗) =

r∑
j=1

βj(x
∗)2ŝ2j(x

∗),

with

βj(x
∗) = ŝ−2j (x∗)/

r∑
i=1

ŝ−2i (x∗).

The weights βj(x
∗) are non-negative, similarly to the stacking ensemble proposed in

Section 6.2.3.
In contrast to stacking, the weights are data-dependent. In fact, the superposition could
react to non-stationary properties of the data. This also has a negative repercussion.
Since the weights may change from location to location, the exclusion of a certain
model is not straightforward. In effect, this means that the predictor of the superposi-
tion approach is usually more expensive than the LASSO-based stacking approach. On
the plus side, fitting the superposition model is cheaper because a model is trained only
once for each kernel. In case of stacking, a model is trained k times for each kernel.
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Of course, using superposition of Kriging models assumes that the uncertainty esti-
mates of each single-kernel model are at least roughly correct. Since the uncertainties
are used to determine the weights, an error in the uncertainties leads to an error in the
linear combination. We refer to the approach of combining kernels via superposition
as combineSuper.

6.3 Experimental Validation
The various multi-kernel methods all have their own advantages and drawbacks. It is of
interest how their different properties translate into optimization performance. To that
end, this section investigates the performance of the methods in a set of experiments
with artificial benchmark functions. The goal is to determine whether the selection or
combination approaches actually work, how they compare to each other, and how they
interact with different test problems.

6.3.1 Experimental Setup
Test Problems To allow for a detailed, yet focused study of the proposed multi-
kernel methods, the experiments focused on permutation problems. Permutations are a
promising choice since numerous distance measures are available. We mostly used the
same test problem classes as described in Section 5.3.1: TSP, ATSP, FSP, WTP, QAP
and UNI. However, a larger number of problem instances was selected for each prob-
lem class. These instances are listed in Table 6.1. The listed UNI instances were based
on Hamming distance (pUNIH*), swap distance (pUNIS*) and interchange (pUNII*).

Model-Free Optimization Settings As a baseline experiment, we tested a model-
free EA as described in Section 2.1. Mostly, the same configuration as in Section 5.3.1
was used, with the following exceptions.

• budget: The budget of fitness function evaluations was set to 200.

• self-adaptation: Based on the statistical analysis in Section 5.3.2, the learning
parameter was set to τ = 1/(2

√
2). The probability of changing to a different

operator was specified with ps = 0.2.

• selection: Also following from Section 5.3.2, tournament selection was chosen,
with a tournament probability of 0.8 and a tournament size of npop/2.

• population size: Accordingly, the population size was set to 5.

Model-based Optimization Settings The various multi-kernel methods were tested
by integrating them into the CEGO algorithm (see Algorithm 4), which used the fol-
lowing configuration. Again, we only list those configurations that differ from Sec-
tion 5.3.1.
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Table 6.1: Overview of the permutation problem instances used in the multi-kernel experi-
ments.

Problem Instance Name m

TSP bayg29 29
TSP fri26 26
TSP gr24 24

ATSP atsp10 10
ATSP atsp20 20
ATSP atsp30 30
ATSP atsp40 40
QAP tho30 30
QAP kra33 32
QAP nug30 30
QAP nug12 12
WTP wt40a 40
WTP wt40b 40

Problem Instance Name Dim

WTP wt40c 40
WTP wt40d 40
FSP reC05 20
FSP reC13 20
FSP reC19 30
FSP reC31 50
UNI pUNIH20 20
UNI pUNIH30 30
UNI pUNIS20 20
UNI pUNIS30 30
UNI pUNII20 20
UNI pUNII30 30

• budget: The objective function evaluation budget was set to 200.

• initial design: 10 samples were created by uniform random sampling.

• model: The distance function d(x, x′) used in the Kriging model was either
chosen from a set of distances, or a combination of those. Each distance was
also tested separately, without any multi-kernel approach. The employed dis-
tance measures are listed in Appendix B.3. The employed multi-kernel methods
were selectFDC, selectFDDC, selectFDC, selectMLE, selectCV, combineLin-
ear, combineMLE, combineStack, and combineSuper. The nugget effect (de-
termined by MLE) was used in the model, in combination with re-interpolation
(cf. Section 2.3.4). A relative tolerance of 1e−16 was used to detect earlier
convergence of the likelihood maximization.

• optimizer: The model-free EA was used to optimize the expected improvement
criterion computed by the Kriging model. Following the results described in
Section 5.3.2, the population size was set to npop = 10, and the self-adaptation
probability was set to ps = 0.2.

6.3.2 Results and Discussion
Visual Analysis To interpret the results, we started with a visual analysis. As an
example, Fig. 6.2 shows box plots of the best-observed values in case of the ATSP
instances. The remaining box plots can be found in the appendix, in Figs. D.1 to D.5.
The visual analysis indicates that the multi-kernel methods worked quite well: they
usually managed to be among the best performing algorithm configurations.
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The best performing single distances seemed to be problem specific. The adjacency
distance worked well for the TSP instances, while the R distance worked well for the
ATSP instances. This makes sense since the R distance is the asymmetric variant of the
adjacency distance, and is hence better suited for the asymmetric TSP. Other distances
that worked well are, e.g., the Position distance for WTP and FSP or the Hamming
distance for the QAP. While not always optimal, the Hamming and Position distances
performed robustly, usually outperforming the model-free EA.
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Figure 6.2: Results of different optimization runs with different kernels for permutations (or
different methods to select/combine kernels) on ATSP instances. Smaller values are better.
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Statistical Analysis To confirm these observations and to receive a more complete
view of the results, we applied the statistical analysis tools described in Appendix A.
The visual analysis already indicated that the data was not homoscedastic. In some
cases (e.g., problem instance atsp10), variances were zero for some algorithms: The
respective algorithms always converged to the optimum. Some of the suboptimal al-
gorithms had rather large variances.
Further, the box plots indicated several cases where the distributions were quite skewed.
These observations were confirmed by the model analysis plots, which are shown
in Fig. 6.3. These plots concern a linear model that includes main effects for cho-
sen kernels, multi-kernel approaches, and problem instances. Transformations and
weighted least squares did not improve this situation sufficiently. Therefore, we used
non-parametric tests for the further analysis.
The initial tests for the presence of significant differences (Kruskal, Friedman) yielded
p-values < 10−16. Hence, we rejected the null hypothesis (no significant differences).
There seemed to be evidence for differences between the algorithms and post hoc tests
were warranted. The resulting ranks based on pairwise multiple comparison tests are
shown in Table 6.2 (cf. Appendix A).
Largely, the statistical tests confirmed the visual analysis: Multi-kernel methods gener-
ally performed equal to or better than single-kernel algorithms, but there was no indi-
vidual problem instance where the multi-kernel methods performed significantly better
than the best single kernel. The best single kernel varied, depending on the problem,
but Hamming and Position distance received the best ranks overall. The model-free
EA was consistently outperformed by most model-based methods, especially by the
multi-kernel approaches.
The exact choice of multi-kernel method seemed to be less important. No decisive
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timization performance dependent on two variables: 1) chosen kernels (or multi-kernel ap-
proaches) and 2) problem instances.
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differences were found between most of the multi-kernel methods. Even the simplest
multi-kernel procedure, selectFDC, produced competitive results. Overall, selection
based on CV received the best rank. It never performed worse than its competitors.
Only the random selection baseline and the superposition approach performed poorly.
While superposition worked well enough in some individual cases (atsp10, reC05 and
most WTP instances), it performed worse than many of the competitors in all other
cases. This may be explained by the way this method combines models: It relies on
using the uncertainty estimates as weights. If these estimates are wrong (e.g., because
an individual kernel or distance does not represent the problem behavior well), the
quality of the combined model deteriorates.

Frequencies and Weights In addition to optimization performance, it is of interest
to investigate how the multi-kernel methods operated during each optimization run:

Table 6.2: Ranks for the experimental comparison of model-based optimization with multi-
ple kernels, based on the non-parametric test procedures described in Appendix A. Rows are
test problem instances, columns are different algorithm configurations, where the name either
identifies the used kernel, or a method that was used to select / combine multiple kernels. The
row “All” shows the combined test for all test problem instances. The rightmost column (EA)
is the model-free baseline algorithm. The best algorithms / kernels are denoted with green
background color and bold font.
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All 5 9 11 4 9 9 6 6 12 9 11 7 12 10 6 8 4 2 3 1 2 3 4 2 6 12

atsp10 2 4 4 3 4 4 3 3 5 1 2 2 5 3 2 3 1 1 1 1 1 1 1 1 1 5
atsp20 2 4 5 3 5 4 4 3 5 1 3 3 5 4 3 4 2 2 2 1 1 1 2 1 3 5
atsp30 2 3 4 2 4 3 3 3 4 1 3 2 4 3 2 3 2 1 1 1 1 2 2 1 3 4
atsp40 1 3 3 2 4 3 3 3 3 1 2 1 3 2 2 2 2 1 1 1 1 2 2 1 3 3
wt40a 2 4 4 1 2 3 2 3 4 4 4 1 4 4 1 3 2 2 1 1 1 1 1 1 1 3
wt40b 2 3 3 1 2 3 2 2 4 3 3 1 3 3 1 2 2 2 1 1 1 1 1 2 1 3
wt40c 2 3 3 1 1 3 2 2 3 3 3 1 3 3 1 2 1 1 1 1 1 1 1 1 1 3
wt40d 1 3 3 1 1 3 2 2 3 3 3 1 3 3 1 2 1 1 1 1 1 1 1 1 1 3
pUNIH20 1 4 5 1 5 4 1 1 5 5 5 4 5 5 2 3 1 1 1 1 1 1 1 1 2 5
pUNIS20 3 1 3 4 6 1 1 2 7 7 7 6 5 7 4 5 1 1 1 1 1 1 1 1 3 6
pUNII20 1 3 3 2 4 3 2 2 4 4 4 4 4 4 3 2 2 1 1 1 1 1 2 1 2 4
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tho30 1 2 2 1 3 1 1 1 3 3 3 3 3 3 2 2 2 1 1 1 2 2 2 1 2 3
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reC05 2 3 3 1 1 2 2 2 3 3 3 1 3 3 1 2 1 1 1 1 1 1 1 1 1 3
reC13 1 3 3 1 2 3 2 2 3 4 3 2 4 4 1 2 2 1 1 1 1 1 1 1 2 4
reC19 2 3 4 1 2 3 2 2 4 4 4 1 4 4 2 3 2 1 1 1 1 1 1 1 3 4
reC31 2 4 3 1 2 3 3 3 4 4 4 2 4 4 2 3 2 1 1 1 1 2 2 1 2 3
bayg29 2 4 5 3 4 4 4 3 5 2 3 3 5 1 3 4 2 1 1 1 1 1 1 1 3 5
fri26 3 3 4 3 4 4 2 3 3 1 4 3 5 1 3 4 1 2 1 1 1 1 1 1 3 5
gr24 3 4 5 3 4 4 4 4 5 2 4 3 5 1 3 4 2 1 2 1 1 2 1 1 3 5
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When was which kernel chosen (or when was which kernel given a large weight)?
And did the largest weights determined by the combination approaches correspond to
the kernels chosen by the selection approaches?
The superposition method (combineSuper) is ignored here, because it did not perform
well. It is also the only approach that employs a local, data-dependent combination ap-
proach. Furthermore, we only present the respective figures for one of the correlation-
based selection methods (selectFDC).
The figures discussed in the following visualize the behavior of the multi-kernel meth-
ods on two problem instances. For the selection methods, the relative frequency of
selecting a specific kernel is reported. For the combination methods, the average of the
weights, divided by the sum of the weights is reported. Hence, the plotted values scale
from zero to one. In both cases, averages over five iterations of CEGO are reported.
The respective plots for the WTP instance wt40a are shown in Fig. 6.4. Clearly, the two
variants of the position distance were favored by the selection methods. While there
was some variance in the beginning, the choice converged to the two position distances
as more data became available. The weights of the combination approaches had a
different pattern, with much more variance. While the position distances received some
weight, other distances, such as LCStr and Hamming, seemed to be more important.
At the same time, the optimization performances of all these algorithms were quite
similar. Only selectFDC received worse ranks, see Table 6.2. A potential reason may
be the occasional selection of the R or Adjacency distance, even late in the runs.
A visualization for the pUNIS30 instance is shown in Fig. 6.5. Here, the behavior of the
selection methods was more diverse. All selection approaches started with a preference
for the cosine distance. Later, selectFDC and selectCV showed more preference for
the swap distance. Interestingly, combineMLE did the opposite: The cosine distance
received large weights at the end of the run. The stacking approach mostly focused on
the swap distance, and the behavior of combineLinear was comparatively random.
It may seem surprising that the observed performances of the multi-kernel methods
were fairly similar, while their internal behavior in terms of weights and selection fre-
quencies differed considerably. But in fact, several of the proposed kernels provide
very similar, potentially redundant information. This is obvious, e.g., for the two vari-
ants of the position distance. Some permutation distances strongly correlate with each
other, as discussed by Schiavinotto and Stützle [221].
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Figure 6.4: Frequency of selection and relative weights assigned to different kernels during
an optimization run on problem wt40a. The weights and frequencies are reported every five
iterations and as an average over these five iterations.
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Figure 6.5: Frequency of selection and relative weights assigned to different kernels during
an optimization run on problem pUNIS30. The weights and frequencies are reported every five
iterations and as an average over these five iterations.



80 6.4. CONCLUSIONS

Runtimes One final aspect of our experiments is the runtime. We list the algorithms
and some of their key features in Table 6.3, including runtimes from the optimization
experiments. Clearly, the runtime depends on the method as well as the problem.
If a problem requires a fast-to-compute kernel (e.g., Hamming distance), a selection
approach that identifies this kernel correctly takes less time than a sub-optimal kernel
(e.g., Lexicographic distance). This situation may be reversed if the computational
effort of the best kernel is large. Of course, the implementation and employed hardware
also have an impact. Therefore, the runtimes given in Table 6.3 should be considered
with care.
Still, some general observations can be made, which are supported by our understand-
ing of the underlying methods. The computational effort was especially large for all
methods that combined or selected fully trained models rather than just kernels. Most
affected by this were the methods that employed models trained on several subsets
of the data, i.e., cross-validation and stacking. Finally, the combination approaches
required more time than comparable selection approaches.
In terms of the listed values, CV and FDC worked best in these specific experiments.
All other methods were worse than or equal to CV or FDC. Please note that a difference
in the listed performance ranks does not necessarily imply a statistically significant
difference between two specific algorithms (cf. Appendix A).

Table 6.3: Comparison of key features of various multi-kernel methods. The first row gives
ranges of the corresponding values for single-kernel runs. The column “acts on" indicates
whether the respective method selects / combines from a set of individual kernels, or from a set
of trained models. The runtime is the mean runtime of an algorithm run in minutes. The last
column captures the ranks from the experimental analysis, i.e., from the first row of Table 6.2.

method type acts on runtime performance

single-kernel 20-49 4-12
FDC selection kernels 22 2
FDDC selection kernels 22 3
CV selection models 98 1
MLE selection kernels 46 2
MLE combination kernels 253 3
linear regression combination kernels 99 4
stacking combination models 1298 2
superposition combination models 257 6

6.4 Conclusions
In this chapter, we investigated how multiple kernels can be selected or combined
to provide better models for SMBO. The how was answered by introducing various
multi-kernel methods that select or combine kernels.
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From a performance point of view, the experimental investigation revealed that it was
more important to select some multi-kernel approach rather than selecting the best
multi-kernel approach. The best performing multi-kernel approach on all test instances
was cross-validation (selectCV). It was closely followed by several other multi-kernel
methods. Only the approach based on the superposition of Kriging models had unsat-
isfactory performance for this use case.
While the selection methods seemed to perform well, other problem classes may re-
quire the combination rather than the selection of kernels. It is likely that the kernels
tested in our experiments did not complement each other, at least for these specific
problem instances. In practice, it may be recommendable to use a combination ap-
proach if it is unclear whether the available kernels complement each other. If there
are indications that they do not complement each other, a selection approach may be
more appropriate especially due to the lower computational cost.
To summarize this chapter, we answer the initially raised questions:

Answer 6.1. Selection. How can the best kernel be chosen without prior knowledge?
We introduced several methods for the selection of kernels based on correlation
measures, MLE, and cross-validated errors. In an experimental study, these methods
seemed to be successful at selecting the right kernel. The cross-validation method
performed best.

Answer 6.2. Combination. Can several kernels be combined?
Similarly to selection, various approaches can be used to combine kernels. These
methods require a significantly larger computational effort. While this additional
effort did not pay off in our experiments, combination approaches may be preferable
for other problem types.

Finally, definiteness may be a reason why some individual kernels performed poorly
in our experiments. At this point, we do not know whether the employed kernels
are definite. The following Chapter 7 shows how the definiteness of a kernel can be
determined.
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Chapter 7

Definiteness of Distance-based
Kernels: An Empirical Approach

The kernels discussed throughout this thesis are usually required to be positive semi-
definite or conditionally negative semi-definite (cf. Sections 2.3 and 4.4). This is not
guaranteed for arbitrary kernels. Of course, this issue is not exclusive to SMBO. In
general, definiteness plays an important role in statistics and machine learning [86,
251, 224].
As outlined in Section 4.4, the definiteness of a kernel matrix can be determined, e.g.,
by analyzing its eigenvalues. It is more difficult to determine the definiteness of a
kernel function. Section 7.1 briefly discusses some ways to determine the definiteness
of a kernel by analytical or theoretical procedures. In practice, it may not always be
feasible to approach this problem analytically. Therefore, this chapter tries to answer
the following two questions:

Question 7.1. Discovery. Is there an efficient, empirical approach to determine the
definiteness of kernel functions that are based on arbitrary distance measures?

Question 7.2. Measurability. Can we quantify to what extent a lack of definiteness is
problematic in practice?

As a solution, we propose an empirical approach in Section 7.2 that is based on sam-
pling or optimization of eigenvalues. If the approach detects an indefinite matrix, the
respective kernel function is demonstrated to be indefinite. Our approach may also
yield insights into measurability. Firstly, a probability of finding indefinite matrices
can be estimated. Secondly, the impact of a kernel’s indefiniteness on model accuracy

The following sections are based on the article “An Empirical Approach for Probing the
Definiteness of Kernels” by Zaefferer et al. [266]. The material was revised to embed it
into the context, notation, and structure of this thesis. Otherwise, a majority of the text has
been adopted verbatim from the original document. The experiments and analysis were not
changed.
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can be linked to the magnitude of eigenvalues. As in the previous chapters, we use
permutation distance measures to demonstrate our ideas.

7.1 Dealing with Definiteness
To handle the issue of a kernel’s definiteness, different (not mutually exclusive) ap-
proaches can be found in the literature.

• Proving: Sometimes, definiteness of a specific function can be proven (or dis-
proven) by theoretical considerations (cf. [32]). One example of such a proof
is discussed in Section 9.2. In practice, this may be an infeasible approach for
more complex kernels [193].

• Designing: Functions can be designed to be definite [116, 99, 171]. Especially
noteworthy are the so-called convolution kernels by Haussler [116]. They pro-
vide a method to construct PSD kernels for structured data. For a similar pur-
pose, Gärtner et al. [100] show how to design a syntax-based PSD kernel for
structured data. However, convolution kernels may be hard to design [100]. Ker-
nels and distance measures may also be predetermined for a certain application.
Then, the laborious design of a new, definite kernel may not be economical.

• Adapting: Algorithms or kernel functions may be adapted to be usable despite
a lack of definiteness. This may affect the performance of the derived model
negatively. More details can be found in Chapter 8.

To supplement these techniques, we propose an empirical approach to detect whether
a function is definite. An empirical approach may help to overcome the difficulty of
theoretical considerations or designed kernels. Empirical results may also be a starting
point for a more formal approach. Furthermore, it may give a quick answer on whether
the modeling algorithm has to be adapted to indefinite kernels.

7.2 Probing Definiteness
As throughout this thesis, we consider the definiteness of a distance-based exponential
kernel, k(x, x′) = exp(−θd(x, x′)). The kernel is definite if the underlying distance
function is CNSD. For a given distance matrix D, CNSDness is determined by the
largest eigenvalue λ̂ of D̂, as described in Section 4.4.1. D is not CNSD if λ̂ > 0. We
could also probe the kernel matrix K, but in this case, the kernel parameter θ would
have to be dealt with.
Of course, it does not suffice to check the definiteness of a single matrix D. This
would be only one possible outcome of the respective kernel or distance function.
Hence, numerous data sets with their respective distance matrices have to be generated
to determine whether any of the matrices are non-CNSD (research question Q1: dis-
covery) and to what extent this may affect a model (Q2: measurability). For smaller,
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finite spaces, a brute force approach may be viable. All potential matrices D can be
enumerated and checked for CNSDness. Since this quickly becomes computationally
infeasible, we propose to use sampling or optimization instead.

7.2.1 Random Sampling for Probing Definiteness
We propose a simple random sampling approach, which we refer to as Random Sam-
pling for Probing Definiteness (RSPD). While we illustrate this for probing CNSDness
of a distance measure, this could easily be extended to probing PSDness of, e.g., a cor-
relation measure. The RSPD approach is presented in Algorithm 5.

Algorithm 5 Random sampling for probing the definiteness of a distance measure.

1: function RSPD(distance(), t ∈ N \ 0, n ∈ N \ 0)
2: nλ+ = 0;
3: for i = 1 to t do
4: create Xi = {x(i1), . . . , x(in)}; . uniform random sampling
5: replace duplicates in Xi with unique samples;
6: Di =distance(Xi); . all pairwise distances of the set Xi

7: compute D̂i; . see Eq. (4.7)
8: compute λ̂ of D̂i; . largest eigenvalue
9: if λ̂ > 0 then

10: nλ+ = nλ+ + 1; . count indefinite matrices
11: end if
12: end for
13: pλ+ = nλ+/t;
14: end function

First, t sets of n samples are randomly generated. Next, the distance matrix is com-
puted for each set. Then, the largest eigenvalue λ̂ of D̂. This eigenvalue determines
whether D is CNSD. The number of times that the largest eigenvalue is positive is re-
tained as nλ+. Accordingly, the proportion of non-CNSD matrices is determined with
pλ+ = nλ+/t.
Obviously, all distance measures that yield pλ+ > 0 are proven non-CNSD. For the
case pλ+ = 0, CNSDness is not proven or disproven. That means, RSPD is analogous
to a Monte Carlo algorithm for problems of the complexity class RP (randomized
polynomial time) [101]. It stops after a fixed number of samples, and allows for a one-
sided error. While a rejection result (non-CNSD) is always true, acceptance (CNSD)
may err with a probability that depends on the number of samples.
The parameter pλ+ is an estimator of how likely a non-CNSD matrix is to occur, for the
specified set size n. To determine definiteness, the calculation of λ̂ of D̂ is not manda-
tory, but it may be useful to distinguish between a pathological case and cases where
the matrix D is just barely non-CNSD (λ̂ close to zero). We show in Section 7.4.3 that
λ̂ of D̂ can be linked to model quality.
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Note that inaccuracies of the numerical algorithm used to compute the eigenvalues
might lead to an erroneous sign of the largest eigenvalue. To deal with that, one could
try to use exact or symbolic methods or else use a tolerance when checking whether
the largest eigenvalue is larger than zero. In the latter case, a matrix D̂ is assumed to
be non-NSD if λ̂ > εtol, where εtol is a small positive number.

7.2.2 Optimization for Probing Definiteness
RSPD may fail if the number of setsX that yield indefinite matrices is small in relation
to the size of X . In such cases, it may be more efficient to replace random sampling
with a directed search. We refer to such an approach as Optimization for Probing
Definiteness (OPD). Here, a set X is viewed as a candidate solution of an optimization
problem. The largest eigenvalue λ̂ of the transformed distance matrix D̂ is the objective
function to be maximized. By maximizing the largest eigenvalue, a positive λ̂ may be
found more quickly (and more reliably) than by random sampling.
This optimization problem is strongly dependent on the kind of solution representation
used. Evolutionary Algorithms (EAs) are a good choice to solve this problem because
they are applicable to a wide range of solution representations (cf. Section 2.1). For
OPD, we use the simple EA from Algorithm 1, with the following configuration.

• Individual: X . A set X = {x(1), . . . , x(n)} with set size n is considered as
an individual, or candidate solution. Set elements x(i) are samples in the actual
search or input space in which the investigated distance operates.

• Search space: Sn. All possible sets X of size n, i.e., X ∈ Sn.

• Population: Z. A population or candidate solution set of size t, containing
Xj ∈ Z with j ∈ {1, . . . , t} and Z ⊆ Sn.

• Objective function:

f : Sn → R
X 7→ λ̂

(7.1)

where λ̂ is the largest eigenvalue of the transformed distance matrix D̂ as de-
scribed in Section 4.4.1. The objective function f is maximized.

• Mutation:
X ′ = mut(X) = {x(1), . . . , x(j−1), sub-mutation(x(j)), x(j+1), . . . , x(n), },
with j ∈ {1, . . . , n}. For the sub-mutation operator, any edit operation that
works for a sample x can be chosen. For example, in case of permutations,
one permutation x(j) is randomly chosen and mutated with typical permutation
edit-operations (swap, interchange, reversal, see also Appendix C). The specific
edit-operation is called sub-mutation operator, to distinguish between mutation
of the individual set X and the sub-mutation of a single permutation x(j) ∈ X .
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• Recombination: Two sets X are randomly split, and the parts of both sets are
joined to form a new set of the same size.

• Duplicate removal: The variation operators may create duplicates (x(i) = x(j)

with i 6= j). These are undesirable and are replaced by randomly generated,
unique samples x∗ /∈ X .

• Stopping criterion: The optimization run can stop when it finds some solution
set X that yields λ̂ > εtol, where εtol is a small positive number. Or else, the op-
timization run can stop when the budget of evaluations of the objective function
is exhausted.

7.3 Experimental Validation

As a proof-of-concept, we chose to perform experiments with permutation distances,
which are frequently used in this thesis. These distance measures were used indiscrim-
inately in Sections 5.3 and 6.3, without knowing whether they are actually CNSD. This
section intends to investigate this question. We consider relatively small set sizes n,
due to our context of SMBO.

7.3.1 Random Sampling

We decided to use t = 10, 000 randomly generated sets of permutations for each RSPD
run. Each set contained n permutations and each permutation had m elements. As a
summary statistic of all t sets, the largest λ̂ as well as the average of pλ+ = nλ+/t were
recorded (see Algorithm 5). The tolerance value was set to εtol = 10−10. Each RSPD
run was repeated 10 times, to receive a robust estimate of the recorded statistics.
Two batches of experiments were examined. The first included all sixteen distance
measures, with n ∈ {4, . . . , 20} and m ∈ {4, . . . , 15}. In the second batch, larger
sizes n ∈ {21, . . . , 40, 45, 50, 60, 70, 80, 90, 100} were tested, but the permutations
were restricted to m ∈ {5, . . . , 15}, and the distance measures were limited to LCStr,
Insert, Chebyshev, Levenshtein, and Interchange.

7.3.2 Optimization

To be comparable to RSPD, the budget for each OPD run was set to 10, 000 fitness
function evaluations. A run stopped if the budget was exhausted or if λ̂ > εtol = 10−10.
The population size of the EA was set to npop = 100, and the respective number of
offspring was noff =

⌊
0.5 npop

⌋
. Truncation selection was used.

To identify bias introduced by the choice of the sub-mutation operator (which may have
a strong interaction with the distance measures), each EA run was repeated with three
different sub-mutation operators: swap, interchange, and reversal (see Appendix C).
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All sixteen distance measures were tested, with n ∈ {4, . . . , 20} and m ∈ {4, . . . , 15}.
With ten repeats and the three different sub-mutation operators, an overall number of
97, 920 experiments are run, each with 10, 000 fitness function evaluations.

7.3.3 Other Distance Measures

To show that RSPD and OPD are not limited to permutation distance measures, we
also explored other search domains and their respective distances. However, these are
not discussed in further detail. Instead, we generated a list of minimal examples: the
smallest (with respect to dimension) indefinite distance matrix found for each tested
distance measure. The examples include distance measures for permutations, signed
permutations, labeled trees, and strings.

7.4 Observations and Discussion
We split the summary of our results and their discussion into four parts. First, we
discuss the results of RSPD in Section 7.4.1, then those of OPD in Section 7.4.2.
We extend this by linking the value of λ̂ to model quality in a smaller test study in
Section 7.4.3. Finally, we briefly discuss in Section 7.4.4 that this approach can also
be used for other data types.

7.4.1 Sampling Results

The proportions pλ+ of sets with positive eigenvalues are summarized in Fig. 7.1. The
eigenvalues λ̂ are depicted in Fig. 7.2. Only the five distance measures that achieved
positive λ̂ are shown. That means, five of sixteen distance measures were proven non-
CNSD: Longest Common Substring, Insert, Chebyshev, Levenshtein, and Interchange.
No counter-examples were found for the remaining eleven measures. That did not
prove that they are CNSD (although some are known to be CNSD, e.g., the Euclidean
distance, the Swap distance [135], and the Hamming distance [128]), but indicated that
it may be unproblematic to use them in practice. Conversely, previous results indicated
that even non-CNSD distances might produce good results in practice. For example,
the experiments in Section 6.3 showed that the Levenshtein and Insert distance seemed
to work well for the WTP instances, despite being non-CNSD. Even a non-CNSD dis-
tance measure may yield PSD kernel matrix K, depending on the specific data set and
the kernel parameters. We do not propose that non-CNSD distance measures should
be avoided, but that their application should be handled with care.
Regarding pλ+, some trends can be observed in Fig. 7.1. For indefinite distance mea-
sures, increasing the set size (n) led to larger values of pλ+, up to pλ+ = 100%. Obvi-
ously, a larger set is more likely to contain combinations of samples that yield positive
eigenvalues λ̂. Moreover, the upper bound of these eigenvalues increases with increas-
ing matrix size [67].
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Figure 7.1: Mean proportion of sets yielding matrices D̂ with positive λ̂ found with random
sampling. Only distance measures that achieved positive λ̂ are shown. The numeric labels and
the color indicate the respective value of m. The figure is taken from [266].

In contrast to the set size, increasing the number of permutation elements (m) de-
creased the proportion of positive eigenvalues pλ+ in all five cases. This can be at-
tributed to a larger search space. Overall, none of the distance measures showed ex-
actly the same behavior. The LCStr distance had the least problematic behavior. Only
few sets (of comparatively large size) yielded positive eigenvalues with the LCStr dis-
tance. The Interchange, Levenshtein, and Insert distance all yielded relatively large
pλ+ for small set sizes n. On the other hand, the Chebyshev distance started to produce
non-zero pλ+ for relatively large n. The number of permutation elements had a weaker
influence on the Chebyshev distance. It was the only measure where no positive eigen-
values were found for m = 4. Analogous to pλ+, the magnitude of the eigenvalues
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Figure 7.2: Mean of maximal λ̂ of D̂ found with RSPD. The maximum is determined over all
sets in a single experiment. The mean is determined over ten repeats of the sampling. Only
distance measures that achieved positive λ̂ are shown. The numbers inside the plot and the
color indicate the respective value of m. The figure is taken from [266].

increased with increasing n and decreased with increasing m.

Our findings are confirmed by some results from the literature. Cortes et al. [68] have
shown that an exponential kernel function based on the Levenshtein distances is in-
definite for strings of more than one symbol. Our experiments show that this result
can be easily rediscovered empirically, for the case of permutations. At the same time,
these findings also provide a reason for numerical problems observed in a previous
study [271].
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7.4.2 Optimization Results
The average number of fitness function evaluations that was required to find a matrix
D̂ with positive eigenvalues is depicted in Fig. 7.3. OPD and RSPD had similar be-
havior with respect to n and m. Increasing m led to an increased number of fitness
function evaluations. That means, finding positive eigenvalues became more difficult
with larger m. Conversely, increasing n reduced the number of required fitness func-
tion evaluations. That is, finding positive eigenvalues became easier. In some cases,
this effect disappeared for large values of m, e.g., for the LCStr distance, where the
averages were more or less constant over n, if m ≥ 10.
Importantly, the comparison of OPD and RSPD clearly shows that the EA had some
success in optimizing the largest eigenvalue of the transformed distance matrix D̂. In
several cases, OPD found solutions with positive eigenvalues while RSPD failed to find
any. It seemed that the fitness landscapes based on λ̂ of D̂ were sufficiently smooth to
allow for optimization. The eigenvalue λ̂ seemed to be a good indicator of how close
a solution set was to yielding an indefinite kernel matrix.
As expected, the results showed that the choice of sub-mutation operator introduced
some bias to the results. For the Insert and LCStr distance, the EA with swap muta-
tion worked considerably better than the other two variants. Therefore, comparisons
of these values across different distance measures should be handled with caution.
Clearly, other aspects of the optimization algorithm (e.g., selection criteria or recom-
bination operators) may introduce a similar bias.

7.4.3 Verification: Impact on Model Quality
Earlier, we discussed two values that may express the effect of the lack of definiteness
in practice, i.e., pλ+ and λ̂ of D̂. But what do these values imply?
An advantage of pλ+ is that it is rather easy to interpret. It can be seen as a probability
of generating indefinite matrices. If we assume that a model is unable to deal with
indefinite data, the fraction pλ+ is an estimate of how likely a modeling failure is. For
other cases, it may be interpreted as a probability to receive worse results. Still, it is
difficult to link pλ+ to a model performance measure, such as accuracy, without making
too many assumptions. We argue that pλ+ provides useful information, especially
when the kernel is designed and probed before sampling any data (e.g., when planning
an experiment). We suggest using pλ+ to support an initial decision (e.g., whether to
spend additional time on fixing or otherwise dealing with the indefinite kernel).
In contrast, the parameter λ̂ is more difficult to interpret. It has the advantage that it
may be estimated for a single set or matrix. Hence, we want to determine whether the
magnitude of this eigenvalue affects model performance. We expect an influence that
depends on the choice of model. Consider, e.g., the Kriging models used throughout
this thesis (see Sections 2.3 and 5.1). Kriging may be able to mitigate the problem-
atic eigenvalue by assigning larger θ values to the kernel k(x, x′) = exp(−θd(x, x′)).
Mostly, very large λ̂ require very large θ. Large values of θ lead to kernel matrices that
approximate the identity matrix. Clearly, the identity matrix is PSD. A model based
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on the identity matrix would be able to reproduce the training data, but would predict
the process mean for all other data points. That means, larger θ values might correct a
non-CNSD distance matrix, but could produce a rather poor model.
An experimental test has to consider the potential bias of the used data set. We need
to be able to reasonably assume that differences in performance are actually due to the
properties of the employed kernel (i.e., a kernel performs poorly because the corre-
sponding λ̂ is large) rather than properties of the data set (i.e., a kernel performs poorly
because it does not fit well to the ground truth of the data set). To that end, we suggest
deriving the observations for a test data set from the same distances that are used in the
model. That is, we use the unimodal test problems employed in Section 5.3.1.
Hence, we performed the following experiment. We randomly created data sets X of
size n with permutations of dimension m, similarly to the random sampling performed
earlier. Then, we created training observations by evaluating the distance of each per-
mutation in X to a reference permutation xref =

[
1 . . . m

]
, i.e., y = d(x, xref). A

Kriging model was then trained with this data. We chose Kriging for the sake of a
transparent and interpretable test case. Similar experiments could easily be made with
support vector regression.
The model was trained with the kernel k(x, x′) = exp(−θd(x, x′)), and the model pa-
rameters (e.g., θ) were determined by maximum likelihood estimation, via the locally
biased version of DIRECT [94] with 1,000 likelihood evaluations. For each test, the
distance chosen to produce the observations y and the distance used in the Kriging
model’s kernel were identical.
The Root Mean Square Error (RMSE) of the model was evaluated on 1,000 randomly
chosen permutations. The resulting RMSE values and the corresponding eigenvalues
λ̂ are shown in Fig. 7.4. A trend can be observed in the figure, which confirms our
expectation. Distances associated to larger λ̂ tended to produce larger errors.

7.4.4 Additional Simple Examples
To highlight the usefulness of the proposed methods, this section lists small example
data sets and the respective indefinite distance matrices that were found in experiments
with RSPD and OPD. Besides the permutation distances, we also tested the reversal
distance on signed permutations, the edit distance for labeled trees, the Jaro-Winkler
distance for strings, and the optimal string alignment distance. For more details, see
Appendix B. The respective results are listed in Table 7.1. All the listed distance
measures are shown to be non-CNSD. Further examples for non-CNSD distances can
be found in Sections 9.1.3 and 9.2.1.
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Figure 7.4: RMSEs of a Kriging model plotted against the eigenvalue λ̂ of D̂. The denoted
distance measures are used in the underlying data set as well as the model itself. The dashed
line depicts a linear trend. The figure is taken from [266].
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Table 7.1: Simple examples for sets that produce indefinite distance matrices, with the re-
spective largest eigenvalue. The matrix in the table is the actual distance matrix, while the
eigenvalue refers to the transformed matrix D̂ derived from Eq. (4.7). The lower triangular
matrix is omitted due to symmetry. Some distances are scaled to [0, 1].

(a) Unsigned permutations

Permutations, Insert, n = 5, m = 4, λ̂ ≈ 0.090

i x(i) di,1 di,2 di,3 di,4 di,5
1 [1 2 3 4] 0 1/3 1/3 2/3 1/3
2 [1 3 4 2] 0 2/3 1/3 2/3
3 [2 3 4 1] 0 1/3 2/3
4 [3 4 1 2] 0 1/3
5 [4 1 2 3] 0

Permutations, Interchange, n = 5, m = 4, λ̂ ≈ 0.090

i x(i) di,1 di,2 di,3 di,4 di,5
1 [1 2 3 4] 0 1/3 1/3 2/3 1/3
2 [1 2 4 3] 0 2/3 1/3 2/3
3 [1 3 2 4] 0 1/3 2/3
4 [1 3 4 2] 0 1/3
5 [1 4 3 2] 0

Permutations, Levenshtein, n = 5, m = 4, λ̂ ≈ 0.135

i x(i) di,1 di,2 di,3 di,4 di,5
1 [1 2 4 3] 0 1 1/2 1/2 1
2 [2 3 1 4] 0 1/2 1/2 1
3 [2 4 3 1] 0 1 1/2
4 [3 1 2 4] 0 1/2
5 [3 4 2 1] 0

Permutations, LCStr, n = 5, m = 4, λ̂ ≈ 0.023

i x(i) di,1 di,2 di,3 di,4 di,5
1 [1 3 2 4] 0 2/3 1/3 1/3 2/3
2 [2 4 1 3] 0 1/3 1/3 2/3
3 [3 2 4 1] 0 2/3 1
4 [4 1 3 2] 0 2/3
5 [4 2 1 3] 0

Permutations, Chebyshev, n = 5, m = 5, λ̂ ≈ 0.034

i x(i) di,1 di,2 di,3 di,4 di,5
1 [1 5 3 4 2] 0 1/4 3/4 3/4 1
2 [2 5 3 4 1] 0 1 1 3/4
3 [4 2 3 1 5] 0 2/4 1/4
4 [4 3 1 2 5] 0 1/4
5 [5 3 2 1 4] 0

(b) Other

Signed Perm., Reversal, n = 5, m = 5, λ̂ ≈ 0.016

i x(i) di,j=1 di,2 di,3 di,4 di,5
1 [ 4 5 -1 -2 -3] 0 4/6 5/6 3/6 2/6
2 [ 2 1 3 -4 -5] 0 2/6 3/6 5/6
3 [-2 1 3 5 4] 0 5/6 3/6
4 [ 4 -2 3 1 -5] 0 2/6
5 [ 4 -2 1 -5 -3] 0

Labeled Trees, Edit dist., n = 5, λ̂ ≈ 0.026

i x(i) di,1 di,2 di,3 di,4 di,5
1 {b{c{b}}} 0 2 1 3 1
2 {b} 0 1 3 1
3 {b{c}} 0 2 2
4 {a{c}{a}} 0 3
5 {c{b}} 0

Strings, Optimal String Alignment, n = 5, λ̂ ≈ 0.102

i x(i) di,1 di,2 di,3 di,4 di,5
1 abc 0 1 2 3 1
2 acc 0 3 2 2
3 cba 0 1 2
4 caa 0 2
5 bac 0

Strings, Jaro-Winkler, n = 4, λ̂ ≈ 0.046

i x(i) di,1 di,2 di,3 di,4
1 bbbb 0 1 1/6 3/6
2 aaaa 0 3/6 1/6
3 bbba 0 3/6
4 aaab 0
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7.5 Conclusions
The main goal of this chapter was to investigate the definiteness of kernels or distances.
Two empirical approaches were suggested. RSPD samples from the space of solution
sets, to find any sets that yield indefinite kernel or distance matrices. In the alternative
OPD approach, a directed search with an EA is used instead. This directed search is
useful if indefinite matrices are rare. The EA maximizes the eigenvalue that is critical
for the definiteness of the corresponding matrix.
As a proof-of-concept, the approaches where applied to distance measures for permu-
tations. Five non-CNSD distance measures were identified: the LCStr, Insert, Cheby-
shev, Levenshtein, and Interchange distance.
It seemed that the optimization approach was successful. It was able to outperform
the sampling approach in discovering sets with indefinite kernel matrices. The success
of the EA indicates that the fitness landscape posed by the corresponding eigenvalue
is sufficiently smooth and has an exploitable structure. This suggests that the largest
eigenvalue is an indicator of how far a certain solution set is from producing an in-
definite matrix. In an additional set of experiments, we further verified that larger
eigenvalues could be linked to a decrease in model quality. This is the basis of the
following responses to our research questions:

Answer 7.1. Discovery: Is there an efficient, empirical approach to determine the
definiteness of kernel functions that are based on arbitrary distance measures?

Random sampling (RSPD) from the space of potential candidate solution sets allows
identifying solution sets that lead to non-CNSD distance matrices. Where indefinite
matrices are rare (and hence more likely to be missed by RSPD), an optimization
approach (OPD) may be more successful. While neither RSPD nor OPD are able
to prove definiteness, both are able to disprove it. At the same time, if no negative
results are found it is reasonable to assume that using the respective distance/kernel
function is feasible in practice.

Answer 7.2. Measurability: Can we quantify to what extent a lack of definiteness is
problematic?

The sampling approach (RSPD) yields a proportion of potentially non-CNSD ma-
trices, which in turn yields an estimate of how problematic a distance measure is.
The number of evaluations required by OPD gives a similar estimate, but it is poten-
tially biased by configuration of the optimization algorithm. Moreover, the success
of the optimization approach (OPD) suggests that the critical eigenvalue λ̂ indicates
how close certain sets are to producing an indefinite matrix. Additional experiments
showed that this eigenvalue could be linked to model performance.

One problem of RSPD and OPD is that separate experiments have to be run for differ-
ent set sizes. Yet, SMBO usually deals with varying data set sizes, starting from small
sets of initial solutions, which grow during an SMBO run. For future research, it may
be interesting to allow the EA to change the set size. Clearly, one issue would be that
enlarging the sets might quickly lead to a trivial solution. Larger sets naturally lead to
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larger λ̂ of D̂. Hence, there is a trade-off between the largest eigenvalue and the set
size. A multi-objective EA (e.g., NSGA-II [74] or SMS-EMOA [36]) may be used to
handle this issue by simultaneously maximizing λ̂ and minimizing the set size n.
In addition, the herein described kernels and distances are not the full story. There
may be other kernels where the relation between distance measure and kernel function
is not as straightforward, or where parameters of the distance measure or the kernel
function have more complicated influence than θ in the exponential kernel. In those
cases, it may be necessary to adapt the proposed method to, e.g., include parameters in
the RSPD and OPD procedures.
Finally, it remains unclear what the best course of action is if a kernel is determined to
be indefinite. The following Chapter 8 shows how Kriging models may deal with this
case.
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Chapter 8

Kriging-based Optimization with
Indefinite Kernels

Chapter 7 described methods that determine whether a kernel or distance is indefinite,
employing an empirical approach. Alternatively, it may be possible to show by theoret-
ical means that a kernel is indefinite. Regardless of how we discover that information,
we need some way to deal with indefinite kernels.
Clearly, even indefinite kernels may still be used in most models, depending on the
specific data sets and the model’s configuration. For instance, the algorithms presented
in Chapter 6 made use of distances that have been shown to be indefinite in Chapter 7.
There are several ways how models can deal with indefinite kernels. Firstly, some data
sets may be unproblematic, especially if the sets are small (cf. Chapter 7). Secondly,
a larger value of the kernel parameter (θ) may produce a PSD kernel matrix despite
an indefinite distance matrix. Thirdly, the employed Kriging models used the nugget
effect. The nugget effect is one potential way of dealing with numerically problematic
(close to singular) or even indefinite correlation matrices. But does this provide well
performing models, and is it the only solution? In general:

Question 8.1. Indefinite Kriging. How can Kriging deal with indefinite kernels?

To answer this question, this chapter first considers some existing methods from the
field of SVM learning. Then, these methods are transferred and adapted to Kriging,
showing how indefinite kernels may be treated in this context. A connection of the

This chapter is partially based on the article “Efficient Global Optimization with Indefinite
Kernels” by Zaefferer et al. [264]. It has been extended and rewritten. Some parts are
taken verbatim from the original publication. An illustration with a one-dimensional ex-
ample was added. Further, the experimental setup was extended to deal with test problems
that are more varied and of a higher dimension. Correspondingly, the experimental analysis
had to be adapted. The remarks on non-stationarity are also not part of the original article.
Finally, some additional repair methods based on a linear combination and a nearest-neighbor
approach were added.
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presented approaches to non-stationary models is outlined. Finally, a numerical study
compares the different approaches that are proposed.

8.1 Correcting Indefinite Kernels
Several recent studies dealt with indefinite kernels in the context of SVMs and related
machine learning methods [105, 170, 111, 262, 186, 60, 61, 167, 165, 109, 4, 166,
222, 3]. A survey is given by Schleif and Tino [222]. Indefinite kernels are only rarely
discussed in connection with Kriging or Gaussian process regression [169, 41, 12].
Four different approaches to handling indefinite kernels can be identified in the litera-
ture.

• Spectrum transformations transform the kernel matrix such that all of its eigen-
values (i.e., the spectrum) become positive (or negative, if desired). They have
mostly been applied in SVMs [222] and, to a lesser extent, for Gaussian Pro-
cesses [12]. Spectrum transformations are outlined and extended by repair meth-
ods in Sections 8.1.1 to 8.1.3.

• Nearest matrix algorithms (Section 8.1.4) try to find matrices that fulfill some
conditions and are as close as possible to the original matrix (under some norm)
[120, 102].

• Feature embedding (Section 8.1.5) interprets the values produced by an indef-
inite kernel as features. Then, it uses a standard, definite kernel to compute a
surrogate similarity based on these features. As the name implies, this approach
embeds the indefinite kernel in a definite one.

• Method modifications imply changes to the modeling method itself (e.g., SVM),
such that the kernel is no longer required to be definite. One example for SVMs
is to convert the quadratic programming problem to a linear one (LP-SVM or
1-norm SVM [170, 275, 166]). Most approaches of this type are not directly
applicable to Kriging. Hence, they are not discussed in the following.

The distinction between these categories is ambiguous. A method may be a combina-
tion from several approaches, or fit into multiple categories. Still, it is a useful basis,
which is in similar form used by other authors, e.g., [166, 222].
In the following discussion, K̃ denotes the modified, definite variant of the kernel
matrix K. Respectively, k̃ denotes the modified variant of the vector of similarities
k between training samples and a new sample (as employed in Eq. (2.4)). Similarly,
corrected distances are denoted with D̃ and d̃.

8.1.1 Spectrum Transformation: Kernel
Transformation of the Kernel Matrix The spectrum transformation is based on the
eigen-decomposition
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K = UΛUT.

Here, U is the matrix of eigenvectors of K, and Λ = diag(λ) is the diagonal matrix
that contains the corresponding eigenvalues. The goal of the transformation is to turn
an indefinite K into a PSD K̃. Chen et al. [61] describe this with a linear transformation
based on a vector a ∈ Rn:

K̃ = AK

= Udiag(a)UTK

= Udiag(a)UT(UΛUT)

= Udiag(a)ΛUT

(8.1)

with
A = Udiag(a)UT. (8.2)

Various choices for a are possible [262, 61, 222], e.g.,

• I) Spectrum flip takes the absolute of the eigenvalues, i.e., λ̃i = |λi|. This yields
the vector aflip = sign(λ). In combination with Eq. (8.4) the flip transformation
is very similar to the approach for SVMs in Krein spaces as described by Loosli
et al. [166].

• II) Spectrum clip sets all negative eigenvalues to zero, with λ̃i = max(λi, 0)
and aclip =

[
I(λ1) . . . I(λn)

]
, where the indicator function is I(λi) = 1 if

λi ≥ 0 else I(λi) = 0. Spectrum clip is related to the Moore–Penrose pseudoin-
verse [176], which is sometimes used in case of ill-conditioned K. Spectrum
clip can be understood to deal with negative eigenvalues as if they are artifacts
caused by measurement noise. Therefore, it is also called the denoise spectrum
transformation [262].

• III) Spectrum shift adds a constant to the diagonal of K, i.e., λ̃i = λi + η with
η ∈ R+ and K̃ = K + ηI. The spectrum shift does not change the differences
between consecutive eigenvalues and only acts on the diagonal of the original
matrix. Hence, it does not disturb the cross-similarity values.

Shifting is equivalent to the nugget effect that is often used in the Kriging model
(see Section 2.3.4), where η is an additional parameter determined by MLE.
Clearly, if η is determined by MLE, spectrum shift does not require the compu-
tation of the eigenvalue decomposition. The nugget effect is often used to deal
with noise or with ill-conditioned K [176]. Since noise and ill-conditioning may
also occur with indefinite kernels, it may be necessary to use the other spectrum
transformations in combination with the nugget effect.

• IV) Spectrum square takes the square of the eigenvalues, i.e., λ̃i = (λi)
2 and

asqr = λ. In addition, the spectrum square is equivalent to computing the square
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of the kernel matrix, that is, K̃ = KK. When λi ≈ 0, the spectrum square will
further reduce the magnitude of λi, which may aggravate potential numerical
problems.

• V) Spectrum diffusion takes the exponential of the eigenvalues, with λ̃i = exp(λi)
and adiff = exp(λ)/λ. Here, K̃ = exp(K), where exp(K) is the matrix ex-
ponential function [262]. Spectrum diffusion can produce numerical problems
when any λi ≈ 0. Spectrum diffusion is closely related to the diffusion ker-
nel [151, 262], which has been proposed to generate PSD kernels for discrete
structures, such as graphs.

Of all these transformations, only spectrum shift (cf. nugget effect [93, 176]) and clip
(cf. pseudoinverse [176] or multi-dimensional scaling [41]) have been used in Kriging
models. They are usually not used to correct definiteness but to deal with noise or
ill-conditioning.

Discussion of Extreme Cases Let us now consider how the spectrum transforma-
tions behave for two extreme cases.

• Let us assume that a negative definite kernel matrix K is given, and we would
like to produce a PSD kernel matrix K̃. Of course, this is a trivial case since
K̃ = −K is PSD. Spectrum clip fails in this case. It sets all eigenvalues to zero.
This is clearly undesirable and stresses that spectrum clip should only be used
if few eigenvalues are negative. While all other methods provide usable results,
spectrum flip is of special interest: Setting all eigenvalues to their absolute value
is equivalent to negating the matrix K.

• As a second case, we assume that the matrix K is already PSD. Both clip and flip
do not change the matrix in this case, whereas square and diffusion do. In that
sense, clip and flip seem to be preferable if the kernel may occasionally produce
definite as well as indefinite kernel matrices.

Of course, if the original matrix K is already determined to be PSD, square and
diffusion do not need to be applied. Then however, an inconsistency may occur
when the matrix is changed only slightly. If a single eigenvalue becomes nega-
tive, all positive eigenvalues are changed by spectrum square and diffusion. In
the same case, spectrum clip and flip only change the single negative eigenvalue.
They behave more consistently when a small change occurs.

Handling New Data Samples To guarantee that new data samples x and training
data X are handled consistently (e.g. in the predictor given in Eq. (2.4)) , the transfor-
mation A has to be applied not only to K but to k as well [61]:

k̃ = Ak. (8.3)
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Equation (8.3) is not required for the spectrum shift, which only affects self-similarities
k(x, x′) with x = x′. While Eq. (8.3) is a consistent way to treat training samples and
new samples [61], its computational effort has been noted as a drawback for predic-
tion [166]. This drawback can be remedied by combining the transformation A and
the resulting inverse of the kernel matrix K−1. The Kriging predictor given in Eq. (2.4)
computes kTK−1. We can easily show that:

k̃TK̃−1 = (Ak)TK̃−1 = kTATK̃−1. (8.4)

The last equality in Eq. (8.4) is because A is a symmetric matrix, as can be seen from
Eq. (8.2). The computation of ATK̃−1 needs to be performed only once since it is
independent of the new sample. Therefore, the computational effort of the Kriging
predictor is not increased. With Eqs. (8.1) and (8.4) and UT = U−1, we can show that
the predictor only requires the untransformed, original kernel:

k̃TK̃−1 =kTATK̃−1

=kTUdiag(a)UTUdiag(
[

1
a1λ1

. . . 1
anλn

]
)UT

=kTUdiag(
[

1
λ1

. . . 1
λn

]
)UT

=kTK−1.

(8.5)

Similarly to the predictor, the uncertainty estimate in Eq. (2.5) computes kTK−1k.
With Eq. (8.1), Eq. (8.3), and Eq. (8.4) this yields:

k̃TK̃−1k̃ = kTATK̃−1Ak. (8.6)

Hence, ATK̃−1A only needs to be computed once, after training the model. Stor-
ing the result requires additional memory. This should usually be negligible since we
perform expensive optimization where training data sets can be expected to be rather
small. Moreover, the matrix A itself does not require being stored. In the following,
PSD-correction refers to all methods that generate PSD matrices via spectrum trans-
formation, with K̃ = SPECPSD(K).

8.1.2 Spectrum Transformation: Distance
It is straightforward to extend spectrum transformations to distance matrices, by gen-
erating NSD matrices with D̃ = SPECNSD(D) = −SPECPSD(−D). Unfortunately,
Eqs. (8.4) to (8.6) are not applicable in this case. Thus, the computational effort for
prediction increases: The transformation d̃ = Ad has to be applied to any new data
samples and cannot be computed in advance. Fortunately, the effort for MLE decreases
in comparison to PSD-correction, since the distance matrix has to be transformed only
once (before MLE) and not for every single likelihood calculation.
The NSD-correction of a distance matrix is somewhat excessive because NSDness is
not strictly required. A transformation to the broader class of CNSD matrices would be
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sufficient. This can be implemented as described by Glunt et al. [102]. They describe
an alternating projection algorithm that computes the nearest Euclidean distance matrix
(see also Section 8.1.4). For our purpose, we only need a single projection from that
algorithm. This projection maps a distance matrix to the nearest CNSD matrix. This
highlights a core advantage of CNSD- against NSD-correction: the CNSD-corrected
matrix may be closer to the original matrix than the result of the NSD-correction.
Following Glunt et al. [102], we compute Q = I − (2eeT)/(eTe) with the identity
matrix I and e =

[
1 1 . . . 1

√
n
]T. This is used to calculate D̂ = Q(−D)Q.

Then, the last row and column of D̂ are removed, which gives D̂(−n,−n). Based on
this, we can compute the matrix Ď = SPECPSD(D̂−n,−n). By appending the last row
and column of D̂ to Ď, we produce a matrix of the original dimension n× n. Finally,
the transformed CNSD distance matrix is D̃ = −QĎQ.
Due to these more complex computations, d̃ = Ad is not applicable to the CNSD
case. To handle new samples consistently, a different approach is required. We can use
the straightforward approach suggested by Wu et al. [262]. Let the augmented distance
matrix Daug contain the distances between all training and new, unseen samples. Then,
CNSD-correction can be applied to the augmented matrix, and the vectors for new
samples can be extracted from the result, i.e.,

Daug =

[
D d

dT 0

]
and (after transformation) D̃aug =

[
D̃ d̃

d̃T d̃

]
. (8.7)

We denote this approach as re-transformation. The resulting distance vector d̃ can
be used in the Kriging predictor. In the following, spectrum transformations of the
distance matrix are denoted with NSD- or CNSD-correction.

8.1.3 Spectrum Transformations: Condition Repair
The spectrum transformations are clearly useful to produce definite matrices. Unfortu-
nately, the resulting matrices are not guaranteed to fulfill the other conditions required
for distance and correlation matrices as described in Chapter 4. That is, the distances
or kernel matrices are no longer guaranteed to be non-negative. The diagonal of the
distance matrix may become non-zero. The kernel values (correlations) are also no
longer guaranteed to be smaller than one.
Consequently, uncertainty estimates for observed samples (training data) can become
non-zero. This is undesirable because it may stall the optimization progress since the
expected improvement may become non-zero for already evaluated candidate solu-
tions. A related issue with the nugget effect is described by Forrester et al. [93]. We
refer to methods that mend this defect as condition repair methods.
A PSD correlation matrix can be repaired with [207]

K̃∗ij = K̃ij/sqrt(K̃iiK̃jj). (8.8)

A CNSD distance matrix D̃ can be repaired with
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D̃∗ij = 2D̃ij − D̃ii − D̃jj. (8.9)

The result is non-negative, has a zero diagonal, and is CNSD [53].
Since the nugget effect (spectrum shift) only changes the diagonal of K, Eqs. (8.8)
and (8.9) are not required in that case. Instead, the uncertainty estimate can be reme-
died by the re-interpolation approach [93].
Equations (8.8) and (8.9) repair the matrices associated with the training data. Any
new data needs to be treated consistently. That means, Eqs. (8.8) and (8.9) need
to be applied to new data. That implies, for any new sample x(l=n+1), the trans-
formed self-similarities (K̃ll = k̃(x(l), x(l))) or self-distances (D̃ll = d̃(x(l), x(l))) are
required. These quantities are not known, because the “transformed” functions k̃(x, x)
and d̃(x, x) are not known explicitly. We suggest three different methods to determine
these values.

Repair by Re-transformation Following the idea of Eq. (8.7), the correlation or
distance matrices can be computed for the augmented data set (training data and new
samples). Afterwards, a spectrum transformation can be computed for matrices that
describe the whole data set. Naturally, this yields the necessary K̃ll or D̃ll for all sam-
ples. Inconsistencies of the transformation are a potential problem: The transformation
used for the augmented data may differ from the one used during model training.

Repair by Nearest-Neighbor To approximate K̃ll, we can determine the nearest
neighbors of the new sample x(l) in the training data set. That is, we determine those
samples x(i) ∈ X that have the minimal distance d(x(i), x(l)). The mean of these
neighbors’ self-similarity can be used as an approximation of the new samples self-
similarity. Distances can be computed accordingly. A drawback of this approach is
that the approximated value may jump if a slight change of a candidate results into a
different nearest neighbor.

Repair by Linear Combination A smoother approximation can be generated with
a linear combination of all self-similarities in the training set. That is

K̃ll =
n∑
i

βiK̃ii. (8.10)

Here, the weights βi are based on the reciprocal of the distance to the new sample,
qi = 1/d(x(i), x(l)), with βi = qi/(

∑n
i qi). This ensures that the weights sum to one.

If d(x(i), x(l)) = 0, then the two samples are identical, and K̃ll = K̃ii. Values for D̃ll

can be computed in the same way.

One drawback of the latter two approximations is their potential inaccuracy. One result
of this is, e.g., that the approximated D̃ll can occasionally become too large, yielding
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a negative result in Eq. (8.9). In such cases, the approximated values have to be set to
a respective lower or upper bound.

8.1.4 Nearest Matrix Approach

An alternative approach to spectrum transformation is to compute the nearest correla-
tion matrix [120] or nearest Euclidean distance matrix [102]. One approach to compute
these nearest matrices is based on alternating projections. Here, two projections are ap-
plied sequentially to the indefinite matrix, until a convergence criterion is fulfilled. The
result is the nearest matrix (e.g., under F-norm) that fulfills the required conditions.
For correlation matrices or Euclidean distance matrices, the alternating projection ap-
proach reveals a strong link to the spectrum transformations. In both cases, the first
projection is based on the spectrum clip, and the second projection forces all values on
the diagonal to one (correlation) or zero (distance). A process that applies both pro-
jections alternatingly converges to a correlation (distance) matrix that is PSD (CNSD).
The result is the nearest matrix with the desired properties. Further condition repair is
not required.
Unfortunately, these methods lack an efficient and consistent way of handling new
data samples. Similarly to the condition repair procedures, a re-transformation as de-
scribed in Eq. (8.7) can be used to derive k̃ (or d̃ analogously). However, the nearest
matrix computation already involves an optimization process, which requires signifi-
cantly more computation time than the single-step spectrum transformations. Hence,
recomputing the nearest correlation or distance matrix for every prediction would often
require an intractably large computation time.

8.1.5 Feature Embedding

In feature embedding [166], indefinite kernel matrices can be interpreted as real-valued
data features. Consequently, these features can be used as an input for a standard
CNSD distance function or a PSD kernel function. In the CNSD case, this very intu-
itive, simple approach works as follows.

D̃ij = ddef(Di·,Dj·),

where Di· and Dj· are the i-th and j-th rows of a potentially indefinite matrix D, and
ddef(x, x

′) is a CNSD distance function. We use the Euclidean distance, but any CNSD
distance for real-valued data is appropriate. Then, the Kriging model is trained with D̃
and K̃ij = exp(−θD̃ij). To be consistent, new data has to be handled with the same
feature embedding. That means, distances between training samples and new samples
have to be subject to d̃i = ddef(d,Di·).
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8.2 Indefiniteness and Non-Stationarity

A Link to Non-stationarity One issue of the spectrum transformations is that their
meaning is not perfectly clear in the context of Gaussian processes. How can the
transformations and repair methods be interpreted?
One hint is given by the necessity of the repair procedure from Eq. (8.8). It is identical
to the computation that is needed to determine a correlation matrix based on a covari-
ance matrix of a non-stationary process. Non-stationary covariances depend on the
spatial location. That is, covariances directly depend on the absolute positions x and
x′, rather than only their relative position via the distance d(x, x′). In the stationary
case, C = σ2K (cf. Eq. (2.2)). For the non-stationary case, this is not true because the
variances (diagonal of C) are no longer constant. In other words, we are able to inter-
pret the spectrum transformations and repair methods as a mapping from an indefinite
kernel to a definite but non-stationary kernel.
Therefore, we could now employ covariance matrices instead of correlation matrices.
This has two repercussions. Firstly, we would need to adapt the likelihood function
from Eq. (2.3) slightly so that it is expressed in terms of the covariance matrix. Sec-
ondly, PSDness is a sufficient criterion for the validity of a covariance matrix. No
upper or lower bounds on the matrix elements have to be satisfied.
The latter suggests that we no longer need a condition repair procedure. Unfortu-
nately, this would not resolve the core issue of the repair procedures: the need to ex-
tend the spectrum transformations to the cross-similarities and self-similarities of new
data points (cf. Section 8.1.3). This becomes clear when considering the uncertainty
estimate. If we express it with respect to the (corrected) covariance matrix, it becomes
(cf. Eq. (2.5))

ŝ2(x) = c̃(x, x)− c̃TC̃−1c̃. (8.11)

Here, c̃(x, x) is an unknown covariance function that includes the spectrum transfor-
mation. The covariance vectors and matrices may be computed, e.g., via c̃ = Ac and
C̃ = AC. However, c̃(x, x) can only be computed as discussed in Section 8.1.3.

A Note on the Nyström Approximation Non-stationarity motivates an alternative
approach to compute c̃ (x,x), inspired by spectral tempering as discussed by Pintore and
Holmes [201]. They change the eigenvalue spectrum of PSD covariance matrices, with
the goal to introduce non-stationarity into the Gaussian process. We have a slightly
different point of view: An indefinite covariance function implicitly produces a non-
stationary, PSD kernel by spectrum transformation.
Despite this difference, Pintore and Holmes end up with a similar problem: They need
to extend the spectrum transformation to new samples for the purpose of prediction. To
that end, they make use of approximations like the Nyström method [201]. The Nys-
tröm approximation is frequently used in kernel-based machine learning, to provide
low-rank approximations of kernel matrices [206, 260]. For any PSD kernel matrix,
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the Nyström approximation can be written as [260]

Cno,no
=

[
Cn,n Cn,no−n
Cno−n,n Cno−n,no−n

]
≈ Cno,n

C−1n,nCn,no
.

Here, Cno,no
is the full matrix to be approximated with no overall samples (new sam-

ples and training data), n is the number of training observations (which are the basis of
the approximation), Cn,no−n = CT

no−n,n are the similarities between training data and
new samples, Cn,no

=
[
Cn,n Cn,no−n

]
, and Cno−n,no−n are the similarities between

the new samples themselves.
In our case, Cn,n and Cno−n,n are given via the spectrum transformations. We only
need Cno−n,no−n for the uncertainty estimate in Eq. (8.11),

Cno−n,no−n = Cno−n,nC
−1
n,nCn,no−n.

For a new sample x in our case, this can be written as

c̃(x, x) = c̃C̃−1c̃, (8.12)

where C̃ is the transformed covariance matrix of the training data, and c̃ is the vec-
tor of transformed cross-covariances. Unfortunately, by substituting Eq. (8.12) into
Eq. (8.11), the uncertainty estimate of our Kriging model becomes exactly zero. Hence,
the Nyström approximation seems to be an infeasible solution in our context.

8.3 A Simple Example
To provide an example, we used a one-dimensional, continuous test function:

f(x) = x4 − 2x2 + x

with x ∈ [−1.5, 1.5]. The same function has been used, e.g., in Example 2.3.1. While
discrete problems are our main motivation, the implications of models with indefinite
kernels are easier to understand if they are visualized for a continuous example.
For our example, fifteen uniform random samples were taken from the interval [−1, 1].
They were evaluated with the test function. These samples and observations were the
training data for the model.
To model the corresponding data, we used the distance

dNon-stat(x, x
′) = |x− x′|(|x|3 + |x′|3)/2,

The distance dNon-stat(x, x
′) is non-CNSD (see Appendix B), and non-stationary. It

depends on |x| and |x′|, not just on |x − x′|. We chose this distance for two reasons.
Firstly, this distance measure is indefinite even in a one-dimensional search space.
Secondly, it provides a connection to the discussion of non-stationarity in Section 8.2.
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Figure 8.1: The underlying true function (dotted line), training data (red dots), and three
uncorrected Kriging models, each with a different kernel parameter θ, based on the non-CNSD,
non-stationary distance described in Section 8.3. The green line (θ = 1.7626) represents the
MLE result.

We used an exponential kernel with k(x, x′) = exp(−θdNon-stat(x, x
′)). By MLE, we

found that the optimal kernel parameter for the training data was θ ≈ 1.7626. Clearly,
a non-stationary distance was not a good choice for our stationary test problem. This
was confirmed by a visualization, as depicted in Fig. 8.1. The trained model did not
represent the true function very well. The poor result was not caused by a failure of
the MLE procedure. Other θ values did not improve the model.
One solution to this problem would have been to choose a better-suited distance mea-
sure. Under the assumption that we had no other distance measure available, we tested
whether the definiteness correction methods were able to improve the model. First,
we tested the nugget effect, as shown at the top of Fig. 8.2. The resulting model was
better, but left room for further improvement.
Feature embedding in combination with the nugget effect produced a better result,
as shown in the center of Fig. 8.2. CNSD correction with spectrum flip and re-
transformation yielded a similarly good result (bottom of Fig. 8.2). All other combina-
tions of correction and repair methods are shown in Appendix D, Figs. D.6 to D.9. In
all depicted cases, the nugget effect was used. Many produced similarly good results as
feature embedding and CNSD correction. Mostly, the spectrum transformations were
able to counterbalance the non-stationarity of the underlying distance measure. Still,
some configurations performed worse than the uncorrected model.
Based on these preliminary results, we exclude a number of configurations from further
investigation: We only investigate models with the nugget effect since it can help to
avoid numerical issues. The spectrum square is excluded as it often yielded very poor
results, and caused model failures. The reason for these failures is that the spectrum
square decreases the magnitude of eigenvalues if |λ| < 1, while it increases larger
eigenvalues. This may frequently produce ill-conditioned matrices.
The nearest-neighbor repair method is also excluded due to inconsistent, discrete jumps
in the prediction. Similarly, the nearest Euclidean matrix approach is excluded due to
its inconsistent predictions. These inconsistencies are likely to be caused by the fact
that training and test samples are not subject to the same transformations. This could
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Figure 8.2: The test function (dotted line), training data (red dots), and a Kriging prediction
ŷ(x) (blue line). The model uses the non-stationary distance described in Section 8.3. The
shaded region indicates the uncertainty estimate, that is, ŷ(x)± ŝ(x). Top: with nugget effect.
Center: with feature embedding and nugget effect. Bottom: CNSD-correction, spectrum flip,
condition repair with re-transformation and nugget effect.

be remedied by using a re-transformation approach, but this would lead to a consid-
erably increased computational cost. While the nearest correlation matrix performed
somewhat better, we still exclude it, not least because of its computational cost. Fi-
nally, PSD-correction in combination with the linear repair method seemed to lead to
numerically unstable uncertainty estimates. Therefore, this combination is also ex-
cluded.

8.4 Experimental Validation
In the following, a number of more detailed experiments are described. The goal of
these experiments was a more extensive comparison in the context of modeling and op-
timization. Hence, we configured two sets of experiments. Firstly, we tested the model
quality, measuring the accuracy of the predictor and the uncertainty estimate. Sec-
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ondly, the optimization performance was investigated by employing the corresponding
models in CEGO.

Test-problems We used two search domains to test our approaches, real vectors and
permutations. In both cases, the experiments were performed with simple artificial test
functions of the form

f(x) = min
i

d(x, x
(i)
ref),

where x is a candidate solution (permutation or real vector). The objective function
value f(x) was the minimum distance to randomly chosen reference solutions x(i)ref ∈
X , with i = 1, ..., w. The number of reference solutions w controls the multimodality
of the function. In case of w = 1, f(x) is unimodal and identical to the UNI problem
instances already discussed in Sections 5.3 and 6.3 (cf. [181]). Here, tests were made
with w = 1, 3 and 5. In addition, different dimensionalities of the search spaces were
tested (permutation: m = 10, 20, 30, real vector: m = 3, 5, 8). The motivations for
these test problems were two-fold. Firstly, they have a transparent structure, and their
ruggedness can be controlled via w. Secondly, using the same indefinite distance in
the model and the test function ensures that observed performances can be attributed
to the lack of definiteness and the correction methods. This latter reasoning follows
the ideas already outlined in Section 7.4.3.
For the real-valued test problems, we used four different distance measures: the Cheby-
shev distance, the L0.5 distance, a distance based on the test statistic of the t-test, and
the non-stationary distance already used in Section 8.3. For the permutation problems,
we selected the Insert distance, the Chebyshev distance, and the L0.5 distance mea-
sure. The Chebyshev and L0.5 distances are not very natural measures of distance
for permutations. They were chosen to produce test cases that are more pathologi-
cal. All these distances are non-CNSD. More details on the distances can be found in
Appendix B.

Performance measures The accuracy of the models was assessed with the RMSE.
To determine the quality of the uncertainty estimate, we computed standardized resid-
uals (y − ŷ)/ŝ, cf. [140, 256]. These were used to calculate the Cramèr-von Mises
(CVM) test statistic [10], comparing against a normal distribution with zero mean and
unit variance. The intent was to use the CVM statistic to measure the quality of the un-
certainty estimate. For the modeling experiments, a data set with 100 uniform random
samples was generated. The RMSE and CVM values were estimated via 10-fold cross
validation.
For the optimization performance, the best values found after 100 objective function
evaluations were recorded, except for permutation experiments with n = 10, where the
best value after 50 evaluations was recorded, due to the smaller search space of these
problem instances.
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Model and Optimizer settings Most settings of the model and optimizer were taken
from Section 5.3.1, with the following exceptions.

• The budget of the optimizer of the surrogate model (a model-free EA) was set to
10, 000. This is the number of EI evaluations in each iteration of CEGO.

• The Cholesky decomposition was used in the likelihood evaluation of the Krig-
ing model. This decomposition may fail to produce results for uncorrected in-
definite matrices. In that case, the computation routine for the logarithm of the
likelihood was configured to return a penalty of −1e4 + λ1. By including the
smallest eigenvalue λ1 into the penalty, the MLE search may be driven into re-
gions with positive λ1. If no parameterization with positive λ1 is found, the
model training fails.

• The models always used the same distance functions that were employed in the
respective test function. This was supposed to mirror the case where an adequate
distance is chosen by prior knowledge.

• For the correction of definiteness, we tested PSD-, NSD-, and CNSD-correction.
For each of these, we tested transformations with spectrum clip and flip in com-
bination with condition repair methods (none, re-transform, linear). In addition,
tests with feature embedding were performed. As a baseline, experiments are
performed without any form of correction (except for the likelihood penalty).
All correction methods were tested with the nugget effect, except for the baseline
(uncorrected), which was tested with and without the nugget effect. Other meth-
ods for correction or repair were excluded, as noted at the end of Section 8.3.

• Where the nugget effect was used, η was always added to the diagonal of K̃, i.e.,
after applying the other correction methods.

8.5 Observations and Discussion
In the following, we summarize the results and analysis of the performed experiments.

8.5.1 Preliminary Observations: Modeling Failures
In some cases, we observed model failures. Here, a failure implies that no numerically
tractable models were produced.
For the optimization performance tests, runs were stopped prematurely when a failure
occurred. When this happened, the recorded performances were based on the evalu-
ations made before the failure. This penalized model failures because failed runs did
not exploit the complete function evaluation budget.
Overall, there were only very few isolated failures. This is mostly because the majority
of problematic configurations were excluded based on the results in Section 8.3. For



8.5. OBSERVATIONS AND DISCUSSION 111

t-test NonStatDist

-6 -4 -2 -3 -2

clip.CNSD
clip.CNSD + re-transform

clip.NSD
clip.NSD + linear

clip.NSD + re-transform
clip.PSD

clip.PSD + re-transform
flip.CNSD

flip.CNSD + re-transform
flip.NSD

flip.NSD + linear
flip.NSD + re-transform

flip.PSD
flip.PSD + re-transform

feature
nugget only

default

best log10( y )

co
nf

ig
ur

at
io

n

Figure 8.3: Logarithm of the optimization performance for real-valued problem instances.
Lower values are better. The y-axis represents the different definiteness correction methods,
where default is a model without any correction. The depicted instances use m = 5, and
w = 1.

instance, models based on the spectrum square transformation but without the nugget
effect would have much larger failure rates.
For the real-valued optimization experiments, 196 of 12, 240 algorithm runs failed. 170
of those were runs without any correction (default model, baseline). The remaining 26
used NSD-correction without condition repair. None of the model quality experiments
failed. Neither model quality experiments nor optimization experiments failed for the
permutation problems.

8.5.2 Results: Real-valued Problems
Following the procedures from Appendix A, we started with a simple visual analysis.
Optimization performance results from two problem instances are shown in Fig. 8.3.
Especially for the t-test distance, the correction methods performed quite well. All
configurations outperformed the default model without correction. Otherwise, the best
performing methods used repair with re-transformation. For both instances, a variant
with spectrum clip performed best. The model quality results for the same instances
are presented in Fig. 8.4. Two variants with spectrum flip and NSD-correction pro-
duced the lowest error. The same configurations performed less well for the optimiza-
tion experiments. This might be explained by the corresponding CVM values, which
showed that the corresponding uncertainty estimates were extremely poor. In fact,
there seemed to be a clear conflict between the RMSE and CVM measures. This is
fairly obvious, e.g., for the observed results of “flip.NSD”. While it ranks among the
best in terms of RMSE, it also ranks worst in terms of CVM. Yet, the RMSE and CVM
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Figure 8.4: Logarithmic RMSE and CVM values for real-valued problem instances. Lower
values are better. The y-axis represents the different definiteness correction methods, where
default is a model without any correction. The depicted instances use m = 5 and w = 1.

results cannot fully explain the optimization performance results. For instance, the best
performing method for the t-test instance with m = 5 and w = 1 was “clip.NSD+re-
transform”. This same method was outperformed in terms of RMSE and CVM, e.g.,
by “clip.CNSD + re-transform”. This becomes even more obvious by visualizing the
medians of RMSE and CVM together, as shown in Fig. 8.5. The non-dominated con-
figurations on the Pareto front are not necessarily optimal with respect to optimization
performance.
The optimization results indicate that the variances of the data differ strongly. Hence,
a statistical analysis with parametric models was deemed problematic. A preliminary
analysis showed that transformations and a weighted least squares approach could en-
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Figure 8.5: Median of CVM and RMSE values (logarithmic). The solid line is the approxi-
mated Pareto front. The problem instances are real-valued with m = 5 and w = 1.

able a parametric analysis of this data set (cf. Appendix A). Unfortunately, the same
did not apply to the permutation experiments. For the sake of consistency, we decided
to analyze both cases with non-parametric methods. The same applies to the model
quality analysis.
The initial Kruskal-Wallis tests yielded very small p-values (< 10−10). Hence, there
seemed to be differences between the compared algorithm configurations and a post
hoc test was warranted. The ranks resulting from the non-parametric multiple-compari-
son tests are presented in Table 8.1.
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Table 8.1: Real-valued problems: Ranks based on pairwise comparisons via statistical testing
(cf. Appendix A). Green and bold indicates best rank. Each row presents the results of a dif-
ferent test, where “All” indicates a test combining all problem instances. RMSE and CVM are
the model quality measures, y indicates the best-observed value from optimization runs. The
rows for the individual problem instances only concern optimization performance. Problem
instances are denoted as “m.w.distance”.
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3.1.L0.5 4 3 3 1 3 3 3 1 2 4 1 1 5 2 1 5 5
5.1.L0.5 3 3 5 2 3 3 3 2 2 5 2 1 4 2 2 4 4
8.1.L0.5 3 3 4 2 3 3 3 2 1 5 2 1 4 1 4 3 5
3.3.L0.5 3 2 4 2 2 3 4 3 1 5 3 1 5 3 1 4 5
5.3.L0.5 2 2 5 2 1 4 4 1 1 5 3 1 4 2 3 3 5
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3.5.L0.5 3 2 4 1 2 3 4 2 1 5 3 1 5 3 1 4 5
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8.5.L0.5 2 1 3 3 2 3 4 1 1 4 4 1 3 3 5 2 5
3.1.Chebyshev 3 3 3 1 3 2 3 2 2 3 1 2 3 2 1 4 4
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3.3.Chebyshev 3 3 4 1 2 2 4 2 1 4 2 1 4 2 1 4 4
5.3.Chebyshev 2 1 3 2 1 1 2 1 1 2 2 1 3 2 2 3 3
8.3.Chebyshev 2 2 1 1 2 2 3 2 1 2 2 1 2 2 3 2 2
3.5.Chebyshev 3 2 3 1 2 2 3 2 1 4 2 2 3 2 1 3 3
5.5.Chebyshev 2 1 2 1 1 1 2 1 1 2 2 1 2 1 3 2 2
8.5.Chebyshev 2 2 1 1 2 2 2 2 1 2 2 1 3 2 3 2 2
3.1.t-test 2 1 3 2 1 3 3 2 1 3 2 2 3 1 2 3 4
5.1.t-test 2 1 3 2 1 3 2 2 2 3 2 1 2 2 2 3 4
8.1.t-test 2 1 2 2 1 2 3 2 1 3 3 1 3 2 2 4 4
3.3.t-test 2 1 3 2 1 3 2 1 2 3 2 1 2 2 2 3 4
5.3.t-test 2 1 3 2 1 3 2 2 2 3 3 1 2 2 2 4 4
8.3.t-test 1 2 2 2 1 2 2 1 2 2 2 1 2 2 2 3 3
3.5.t-test 2 1 3 2 1 3 3 1 2 3 2 2 3 2 2 3 4
5.5.t-test 1 1 3 2 1 3 2 1 2 3 2 1 1 1 2 3 4
8.5.t-test 1 1 2 2 1 2 2 1 1 3 3 1 2 2 2 3 4
3.1.NonStatDist 3 1 3 1 2 3 4 4 1 3 1 2 3 1 2 3 3
5.1.NonStatDist 2 1 3 2 3 2 3 2 1 3 2 2 2 2 2 3 3
8.1.NonStatDist 1 1 4 1 2 1 2 2 1 4 1 3 1 1 3 3 2
3.3.NonStatDist 2 1 3 1 1 2 3 3 1 3 1 1 2 1 2 3 3
5.3.NonStatDist 2 1 4 2 1 2 3 3 1 4 2 1 3 2 3 3 4
8.3.NonStatDist 1 1 3 1 1 1 2 2 1 3 1 1 2 1 3 2 2
3.5.NonStatDist 3 1 3 1 1 2 4 3 1 3 1 1 3 2 2 3 3
5.5.NonStatDist 2 1 4 3 1 2 4 3 1 4 3 1 3 2 3 3 4
8.5.NonStatDist 2 1 4 3 1 2 3 2 1 4 3 1 2 2 4 3 3
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Interestingly, the ranks for model accuracy (RMSE, CVM) and optimization perfor-
mance (y) often disagreed, especially if RMSE and CVM were considered individu-
ally. For a better match with the optimization performance, RMSE and CVM needed to
be considered in conjunction. For example, the baseline received a rather poor rank for
RMSE, yet a very good rank for the CVM values. This observation can be explained:
The baseline did not correct for definiteness (poor RMSE rank), but the uncertainty es-
timate was not deteriorated by the correction methods (good CVM rank). For the best
performing methods, good (but not necessarily best) ranks for CVM and RMSE had
to occur simultaneously. This confirmed earlier observations from the visual analysis
with Figs. 8.3 and 8.4. It was also confirmed that the default method performed worst.
The simple feature embedding approach performed robustly, but it depended on the
dimensionality of the search space. It was often among the best performers when
the dimensionality of the problem was lowest (m = 3). For larger m, this effect
disappeared, and feature embedding received worse ranks than the baseline model with
nugget effect.
Spectrum transformations often performed very well. Despite this general success,
their main drawback was the difficulty of choosing their configuration for: a) condition
repair methods, b) different types of spectrum transformation, and c) whether NSD-,
CNSD- or PSD-correction should be used:

a) The best performing (y, CVM) configurations used re-transformation. Where appli-
cable, the linear approximation took the middle ground between re-transformation
and no repair. The ranking was sometimes reversed for the RMSE results (e.g., for
the clip.NSD variants).

b) Spectrum flip performed slightly better than spectrum clip. The good results of
spectrum flip are quite promising because spectrum flip is theoretically well-founded
in the case of SVMs [166].

c) NSD- and CNSD-correction seemed to outperform PSD-correction. Intuitively, this
makes sense: NSD- and CNSD-correction correct the distance matrix, which was
the source of the lack of definiteness. If the encompassing kernel function were
the source, only PSD-correction would be possible. Despite their similar perfor-
mance, NSD-correction could be preferred to CNSD-correction due to higher com-
putational effort of the latter. On the other hand, CNSD-correction has promising
theoretical properties: The corrected matrix is closer to the original matrix.

8.5.3 Results: Permutation Problems
For the permutation problems, two examples of the results are visualized with box plots
in Figs. 8.6 and 8.7. Notably, the model quality was very similar for most methods,
especially in case of the problem instance with the Insert distance. The overall best
performing methods in terms of optimization performance seemed to be those that
only used the nugget effect, and several variants with spectrum clip.
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Figure 8.6: Logarithm of the optimization performance for permutation problem instances.
Lower values are better. The y-axis represents the different definiteness correction methods,
where default is a model without any correction. The depicted instances use m = 20 and
w = 1.

As before, we continued with a statistical evaluation. A preliminary analysis indicated
that non-parametric tests were warranted. Among other reasons, this was because
many ties were present in the data set (see also Appendix A).
The initial tests for the presence of differences indicated p-values of 0.0019 or smaller.
Hence, a post hoc multiple comparison test was performed. The resulting ranks shown
in Table 8.2 confirmed the visual analysis. Correction with the nugget effect seemed to
be sufficient for good performance. Here, the more sophisticated correction methods
did not have that much merit. It did not become perfectly clear why the spectrum
transformations provided more benefits for the real-valued test problems. It is possible
that the optimization problems were too simple to detect any meaningful differences.
Creating difficult, but pathological test cases is a challenge. The applications described
in Chapter 9 may provide better test cases.
To investigate this further, we made additional experiments with m = 5. Here, no
differences in optimization performance could be observed at all. These problems
were often solved to optimality within as few as 2 iterations of the CEGO algorithm.
Essentially, the problem with m = 5 was too easy to detect any relevant differences.
The discussed results differ in some cases from previous findings [264]. This may be
explained by the differences in the experimental setup. Most results presented here
considered higher-dimensional problems. In addition, the experiments we described
were conducted with a self-adaptive EA with a five times larger budget of model eval-
uations. The resulting boost in performance may explain why no (or less) differences
are observed in contrast to the previous study.
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Figure 8.7: Logarithmic RMSE and CVM values for permutation problem instances. Lower
values are better. The y-axis represents the different definiteness correction methods, where
default is a model without any correction. The depicted instances use m = 20, and w = 1.
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Table 8.2: Permutation problems: Ranks based on pairwise comparisons via statistical testing
(cf. Appendix A). Green and bold indicates best rank. Each row presents the results of a dif-
ferent test, where “All” indicates a test combining all problem instances. RMSE and CVM are
the model quality measures, y indicates the best-observed value from optimization runs. The
rows for the individual problem instances only concern optimization performance. Problem
instances are denoted as “m.w.distance”.
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All-y 2 2 5 1 2 1 3 3 4 6 4 3 4 4 6 1 4
All-RMSE 1 1 1 1 1 1 2 1 1 3 3 1 3 2 1 2 2
All-CVM 5 3 7 3 3 4 5 6 1 5 4 1 4 5 2 4 1

10.1.L0.5 1 1 1 1 1 1 2 1 1 1 1 1 2 1 2 1 3
20.1.L0.5 3 3 1 1 3 1 3 2 2 2 2 2 3 3 3 1 4
30.1.L0.5 2 2 2 2 2 1 2 3 2 2 2 2 2 2 3 1 4
10.3.L0.5 2 2 2 1 2 2 1 2 2 2 1 2 2 2 1 1 3
20.3.L0.5 1 1 3 2 1 1 1 2 2 3 3 2 3 2 4 1 4
30.3.L0.5 1 1 3 1 1 1 2 2 3 3 3 2 3 3 4 1 4
10.5.L0.5 3 2 2 1 2 2 1 3 3 2 1 3 2 2 1 1 2
20.5.L0.5 1 1 3 1 1 1 2 2 2 3 3 2 3 2 3 1 4
30.5.L0.5 1 1 4 2 1 1 2 3 3 4 3 2 3 3 4 1 5
10.1.Insert 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
20.1.Insert 1 1 3 1 2 1 2 1 2 3 3 1 1 1 3 2 2
30.1.Insert 1 1 2 2 1 1 2 1 1 3 2 1 2 2 3 1 1
10.3.Insert 3 3 3 1 3 1 1 3 3 3 1 3 1 1 2 1 1
20.3.Insert 1 1 3 1 2 1 1 1 1 2 2 2 1 1 2 1 1
30.3.Insert 1 1 2 1 1 1 1 1 1 2 2 1 1 1 2 1 1
10.5.Insert 2 1 2 1 2 1 1 2 2 2 1 2 1 1 1 1 1
20.5.Insert 1 1 3 1 2 1 1 1 1 2 2 1 1 1 2 1 1
30.5.Insert 1 1 2 1 1 1 1 1 1 2 2 1 1 1 2 1 1
10.1.Chebyshev 1 1 2 1 1 1 1 2 2 2 2 2 2 2 2 1 1
20.1.Chebyshev 1 1 1 1 2 1 2 2 2 3 3 2 3 3 3 2 2
30.1.Chebyshev 1 1 1 1 1 1 2 1 2 2 2 1 2 2 2 1 1
10.3.Chebyshev 1 1 2 1 1 1 1 2 2 2 1 2 1 1 2 1 1
20.3.Chebyshev 1 1 1 1 1 1 1 1 1 2 1 1 2 2 2 1 1
30.3.Chebyshev 1 1 2 1 1 1 2 1 2 2 2 1 2 2 2 1 1
10.5.Chebyshev 2 1 2 1 1 1 1 2 2 2 1 2 1 1 2 1 1
20.5.Chebyshev 1 1 2 1 1 1 1 1 1 1 1 1 2 2 2 1 1
30.5.Chebyshev 1 1 1 1 1 2 2 1 1 1 1 1 2 2 1 1 1
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8.6 Conclusions
Finally, we come back to our initial research question:

Answer 8.1. Indefinite Kriging. How can Kriging deal with indefinite kernels?
We showed that spectrum transformations are a promising approach towards Kriging
with indefinite kernels. Overall, it seemed that the exact choice of method does
largely depend on the problem characteristics. In some cases, a simple correction
via the nugget effect may be sufficient.

While the methods we employed were quite successful for a set of real-valued test
problems, they were not that beneficial for permutation problems. Still, methods like
spectrum clip or flip remain a promising choice. Spectrum square was clearly un-
desirable as it frequently produced numerical issues and model failures. Usually, an
additional condition repair method for the transformed data was beneficial.
Due to these results, it may be recommendable to make some preliminary benchmarks
in practice, before any experiments with the expensive, real-world problem. This may
help to identify methods that are adequate for a specific problem. If no preliminary
tests are possible, CNSD-correction with spectrum flip and repair via re-transformation
may be recommendable. This combination performed rather well in several experi-
ments, and has some desirable theoretical properties (e.g., with respect to nearness of
the resulting matrix to the original, indefinite matrix).
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Chapter 9

Applications and Extensions

Up to this point, the experiments and examples in this thesis mostly considered real,
binary, and permutation spaces. While these provide transparent test cases, it is of in-
terest to examine the behavior of our methods for more complex problems. To that end,
we consider the application of our kernel-based modeling and optimization methods
to two additional, challenging types of search spaces: trees for symbolic regression
(Section 9.1) and conditional variables (Section 9.2). In addition, we suggest a test
function generator based on a simulation approach (Section 9.3). This allows future
algorithm developments to be tested with benchmarks based on real-world data.

9.1 A Surrogate for Symbolic Regression

One interesting type of solution representation are trees. They pose a particular chal-
lenge to modeling and optimization algorithms due to the complex relationship be-
tween representation and fitness. Trees are often used in the context of Genetic Pro-
gramming (GP), which automatically evolves computer programs that aim to solve a
certain task [152]. In GP, computer programs are subject to an evolutionary search
process, which improves them based on their fitness, i.e., their ability to solve a given
problem. Examples for GP tasks are symbolic regression (SR), production schedul-
ing [190], and machine learning in general [90].
For the complex tree shaped structures that occur in GP, it is challenging to select
a suitable distance measure and find a feasible modeling approach. We attempt to
answer the following research questions.

Section 9.1 is based on the article “Linear Combination of Distance Measures for Surro-
gate Models in Genetic Programming” by Zaefferer et al. [272]. Especially in the problem
description, the description of the distances, and the experimental setup, major parts were
taken verbatim from the original article. Otherwise, the text was revised and the description
of the distances and the analysis were supplemented with a discussion of definiteness. This
includes additional experimental results with definiteness correction methods. The analysis
was extended, especially with visualizations.
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Question 9.1. Tree distances. What distances are available for modeling in tree-
spaces, and what properties do they have?

Question 9.2. Performance. What impact do these distances have on the performance
of an SMBO algorithm?

To answer these questions, we investigate bi-level optimization problems based on dif-
ferent SR tasks. While these test functions are not that expensive to evaluate (and hence
are not a natural use-case for surrogate models), they present a challenging benchmark
for the proposed models. This provides some important stepping-stones for the fu-
ture design of SMBO algorithms with tree-based data and similarly complex search
domains. For example, the proposed phenotypic distance may apply (with suitable
adaption) to graph optimization problems, which, e.g., occur in the context of neu-
roevolution [96, 239].

9.1.1 Related Work
We have already mentioned some relevant developments in Chapter 3. Here, we would
like to outline how these works relate to our own.
Kattan and Ong [145] describe an approach with two distinct RBFN models (semantic
and fitness). The conjunction of both models is used to evolve a subset of the popula-
tion. They report that their approach outperforms standard GP on three different tasks,
including SR.
Hildebrandt and Branke [121] optimize job dispatching rules with support from a sur-
rogate model. Their surrogate model is a nearest neighbor regression model based on
a phenotypic distance. This distance evaluates the similarity of rules based on their
outcome for a few reference scenarios. They demonstrate that their model allows for
a faster evolution of good solutions. This approach is also discussed and extended by
Nguyen et al. [191].
Piltát and Neruda [200] propose to identify useful genotypic features of the tree struc-
tures. They aim to predict the quality of an individual solely based on these genotypic
features, and test their approach with different SR tasks. They conclude that features
such as the size of the tree structure, the types of labels, and the numbers of labels in a
tree are important.
All these approaches use rather large budgets and mostly employ surrogate models as
filters or decision support in an evolutionary algorithm. To the best of our knowledge,
only Moraglio and Kattan [180] describe a sequential SMBO approach to GP where
a very limited number of function evaluations is allowed. They use an RBFN with
appropriate distance measures, such as the structural Hamming distance. Their results
did not indicate a significant improvement over the use of a model-free optimization
approach.
In contrast to these works, we aim to learn Kriging models (following the idea of
EGO [140]) and employ them in a sequential SMBO framework with a severely limited
number of fitness function evaluations. Our models are based on a linear combination
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of three diverse distances. Like several of the above-described studies, we use SR as
a test case. We want to show that the relation between complex structures and their
associated fitness can be learned and exploited for optimization purposes, even with
extremely limited evaluation budgets. Although SR is not particularly expensive, we
argue that it presents a difficult and challenging test case to investigate whether our
proposed models are able to learn the complex interactions of fitness and genotype.

9.1.2 Bi-level Problem Definition
The goal of SR is to find symbolic expressions (formulas) that solve a regression
task [152]. In essence, SR searches for a formula that best represents a given data
set. GP attempts to solve this problem by using evolutionary techniques.
One frequently chosen representation for symbolic expressions is the tree representa-
tion. Each tree consists of internal nodes and external nodes (leaves). The nodes and
leaves are labeled. Labels on the internal nodes indicate mathematical operators (e.g.,
+,−, ∗, /). The labels on the leaves represent input variables and constant coefficients.
In the following, si, ci ∈ R, where ci is a constant coefficient of the symbolic expres-
sion, and si is the i-th input variable of the regression problem to be solved. As an
example, Fig. 9.1 shows the tree structures of several symbolic expressions.
Our goal is to develop models that learn the relation between discrete tree structures
and their fitness. Here, we are not interested in the influence of the constant coeffi-
cients. Hence, we suggest a bi-level problem definition and integrate the optimization
of the coefficients into the objective function.
In our bi-level definition, the upper level represents the optimization of the discrete
tree structure. For each fitness evaluation of the upper level, the lower level optimiza-
tion problem has to be solved, which comprehends the optimization of the constants.
Therefore, the upper level problem is defined by

min
x
F (x, c∗) subject to c∗ ∈ arg min

c
f(x, c),

where x is the tree structure representation, c ∈ Rdc are the dc constant coefficients,
and f(x, c) is the lower level objective function. The determined solution of the lower
level problem is denoted with c∗. The number of coefficients dc depends on x. In
extreme cases, the tree x may not contain any constants (dc = 0), which eliminates the
lower level problem. The objective function values are determined with

F (x, c∗) = f(x, c∗),
f(x, c) = 1− |corr(ŷ(x, c),y)|, (9.1)

where ŷ(x, c) denotes the output of the symbolic expression for the problem data set, y
is the corresponding vector of true observations, and corr(·, ·) is the Pearson correlation
coefficient. If ŷ(x, c) becomes infeasible (e.g., due to a negative square root or division
by zero), we assign a penalty value of one (the upper bound of our fitness function). In
the following, when we discuss fitness evaluations, we will usually refer to evaluations
of the upper level objective function.
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Example 9.1.1. To provide an example, let us assume we want to find a symbolic
expression that approximates y =

√
s. An upper level optimization process (e.g., an

EA, or CEGO), suggests three symbolic expressions. These expressions are

x(1) = c1 ∗ sin(c2 ∗ s+ c3)

x(2) = c1 ∗ s
x(3) = c1 ∗ (s+ (c2/s))

.

The tree representations of these expressions are shown at the top of Fig. 9.1. Their
approximate solutions to the lower level problem (derived by global optimization with
DIRECT [139]) are

x(1) = −0.67 ∗ sin(−0.43 ∗ s+ 0.63)

x(2) = 5.68 ∗ s
x(3) = 6.58 ∗ (s+ (−0.41/s))

.

The output of the three expressions, with default coefficients (ci = 1) and with opti-
mized coefficients, are shown at the bottom of Fig. 9.1. Here, x(3) receives the best
upper level objective function value because its lower-level solution most strongly cor-
relates with y =

√
x.

*
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*
c2 s

c3

(a) x(1) = c1 ∗ sin(c2 ∗ s+ c3)
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Figure 9.1: Top: Three symbolic expressions in tree representation. The numbers before the
colon are node IDs. Bottom: Outputs of the expressions and the function they intend to ap-
proximate, before and after optimization of the coefficients. Since we are interested in the
correlation between the expressions, the depicted y-values of each curve are scaled to [0, 1].
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9.1.3 Kernels for Bi-level Symbolic Regression
To learn Kriging models for the SR problem, we use the exponential kernel k(x, x′) =
exp

(
−θd(x, x′)

)
. In the following, we introduce several choices for d(x, x′).

Phenotypic Distance The Phenotypic Distance (PhD) estimates the dissimilarity of
two individuals (trees) based on their program output / phenotype, instead of using
their code / genotype. This idea has been suggested by Hildebrandt and Branke for
evolving dispatching rules via GP [121]. They defined a phenotypic dissimilarity by
comparing the outcome of decision rules based on a small set of test situations.
Our SR tasks require a different definition of the phenotypic distance. We propose
to measure the correlation between the outcomes of two symbolic expressions, with
all numeric constants set to one. Hence, we save the effort of the optimization of the
constants and compare the outputs of the expressions with

dPhD(x, x′) = 1− |corr(ŷ(x,1), ŷ(x′,1))|. (9.2)

If either x or x′ are infeasible (e.g., due to division by zero), the distance is set to
its upper bound of one. Essentially, our PhD variant sees the similarity of the curves
shown in Fig. 9.1d and a model based on the PhD attempts to match these similarities
to the curves in Fig. 9.1e.
Setting all coefficients to one is of course arbitrary. A random sample would also be
possible but potentially problematic. A difference in phenotype could be perceived due
to a different assignment of the constants on the leaves, rather than an actually different
behavior of the symbolic expressions.
Instead of this definition (or in addition to it) we could also limit the number of training
data samples used to evaluate the symbolic expressions. This would be closer to the
approach of Hildebrandt and Branke [121]. Since our use cases involve rather small
data sets, this would lead to a negligible reduction in computational cost. Nevertheless,
it may be a promising idea for data sets that are more complex.
Note that the PhD is not necessarily a distance on trees. In the form it is used here, it is
a distance on the output of symbolic expressions, which may be represented by trees.

Proposition 1. The phenotypic distance dPhD(x, x′) is non-CNSD.

Proof. To prove this by example, we test the following four symbolic expressions with
the values s ∈ {0, 0.01, . . . , 0.99, 1}, compute the corresponding outputs y and receive
the phenotypic distance matrix via their correlations:

x(1) = s3 − s
x(2) = s2

x(3) = s

x(4) = s− s2
with DPhD ≈


0.00 0.99 0.76 0.04
0.99 0.00 0.03 0.75
0.76 0.03 0.00 1.00
0.04 0.75 1.00 0.00


This matrix is not CNSD, because the critical eigenvalue of D̂PhD is λ̂ ≈ 0.12 > 0 (cf.
Section 4.4.1).
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*
c1 sin()
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Figure 9.2: Example of how two trees can be transformed into each other via three edit oper-
ations (indicated by red color). From left to right: delete node “sin()”, relabel “*” to “/”, and
relabel “c3” to “s”

Tree Edit Distance As an alternative to the PhD, we also employ genotypic dis-
tances, i.e., distances between the trees that represent the symbolic expressions. One
possible definition of distance between trees is the minimal number of edit operations
required to transform one tree into another. This approach is denoted as the Tree Edit
Distance (TED). We use the TED implementation that was introduced by Pawlik and
Augsten [196]. It is available in the APTED library version 0.1.1 [195]. The APTED
implementation counts the following edit operations: node deletion, node insertion,
and node relabeling. As demonstrated in Section 7.4.4, the TED is not CNSD.
To provide an example, the TED between the trees x(1) and x(3) from Example 9.1.1
is three, because three edit operations are required to transform either of them into the
other. This is illustrated in Fig. 9.2.

Structural Hamming Distance The Structural Hamming Distance (SHD) [182] has
been used to express genotypic dissimilarity for model-based GP in several stud-
ies [180, 145, 121]. Roughly speaking, it compares two trees by recursively checking
each node that the two trees have in common. To compare nodes, it uses the Hamming
distance (denoted HD(x[0], x′[0])), which is one if the two node labels are different
and zero otherwise. The original SHD (SHD1) is defined as

dSHD1(x, x
′) =


1, if arity(x[0]) 6= arity(x′[0])
HD(x[0], x′[0]), if arity(x[0]) = arity(x′[0]) = 0
∆(x, x′), if arity(x[0]) = arity(x′[0]) = nb,

with

∆(x, x′) =
1

nb + 1

(
HD(x[0], x′[0]) +

nb∑
i=1

dSHD1(x[i], x′[i])

)
. (9.3)

Here, x and x′ are trees, x[0] indicates a root node of x, x[i] with i ≥ 1 is the i-th
subtree of the root node, and arity(x[0]) implies the number of subtrees linked to the
corresponding node. The SHD is illustrated in Fig. 9.3, using x(1) and x(3) from Ex-
ample 9.1.1.
We use a slight variation, which we refer to as SHD2. For the sake of simplicity, we
give a definition for trees with a maximum arity of two, that is, nb ≤ 2. SHD1 and
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Figure 9.3: Rough illustration of the structural Hamming distance between trees: The Ham-
ming distance on the nodes of the matching structure. Non-matching structure is grayed out.
Red font indicates a difference in the relevant nodes.

SHD2 are identical, except for the case arity(x[0]) = arity(x′[0]) = nb > 1. Then,
Eq. (9.3) becomes

∆(x, x′) =
1

nb + 1

(
HD(x[0], x′[0]) +

min
(
dSHD2(x[1], x′[1]) + dSHD2(x[2], x′[2]), dSHD2(x[1], x′[2]) + dSHD2(x[2], x′[1])

))
.

That means, when two subtrees x[1], x[2] are compared with their counterparts x′[1],
x′[2], we use the pairing or alignment between x and x′ that yields the smaller distance.
Potentially, this is more accurate, since it does not depend on the (arbitrary) initial
alignment of the two trees. For instance, consider the two expressions x = s + 1 and
x′ = 1 + s, where the left part of each expression is correspondingly placed on the left
branch in the tree representation. Under SHD1, both expressions would have a non-
zero distance, whereas SHD2 yields exactly zero. The latter is clearly more appropriate
because the actual expressions are identical. Unfortunately, SHD2 requires additional
computational effort, even more so for larger arities.

Proposition 2. The second variant of the structural Hamming distance dSHD2(x, x
′) is

non-CNSD.

Proof. To prove this by example, we consider the following samples, where the brack-
ets imply the structure of the underlying tree, and the operator in the middle represents
the root node. The expressions are

x(1) = (s/s) + (s+ s)

x(2) = (s/s) + (1 + s)

x(3) = (s+ s) ∗ (s ∗ s)
x(4) = (1 + s) ∗ (s ∗ s)
x(5) = (1/s) ∗ (s− s)

with DSHD2 =
1

9


0 1 4 5 5
1 0 5 4 5
4 5 0 1 3
5 4 1 0 2
5 5 3 2 0

 .

This matrix is not CNSD as the critical eigenvalue of D̂SHD2 is λ̂ ≈ 0.0062 > 0 (cf.
Section 4.4.1).
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Linear Combination The introduced distances for SR trees are fairly diverse. Es-
pecially the genotypic and phenotypic measures contribute quite different information.
Hence, we decided to combine them. We propose a linear combination of PhD, TED,
and SHD2, using MLE as discussed in Section 6.2. We decided to focus on one of the
SHD variants due to their similarity and chose the SHD2 variant due to its potentially
increased accuracy. The increased computational cost of SHD2 is irrelevant compared
to the significantly larger costs of the TED. Hence, the linear combination is

k(x, x′) = exp
(
−β1dSHD2(x, x

′)− β2dPhD(x, x′)− β3dTED(x, x′)
)
. (9.4)

Each distance receives a weight βi ∈ R+ that is determined by MLE.

Comparison of the Distances To get a rough idea of the differences in behavior,
we made some preliminary tests. We first calculated the distance matrices for 100
randomly generated trees (symbolic expressions). The trees are generated as described
in Section 9.1.4 for the Kotanchek2D problem. We computed the Pearson correlation
between the different distance matrices. For this example, the SHD variants yielded a
strong correlation of 0.99. For the rest, the correlation were 0.51 (PhD, SHD2), 0.29
(PhD, TED), and 0.37 (TED, SHD2). The two SHD variants seemed to behave very
similar. Of the rest, PhD and SHD2 had the highest correlation. The weak correlation
of TED and SHD may seem surprising because they both consider the genotype. At
least in parts, this is due to their strongly different scaling. In addition, SHD may give
more weight to structural differences close to the root node.
This point becomes more obvious from Fig. 9.4, which visualizes the corresponding
distance matrices. Here, the trees are sorted based on their complexity (tree depth and
number of nodes). It shows that the SHD does not distinguish between trees of different
complexity very well. Several large blocks of the SHD matrices have a value of one,
indicating that the respective trees are at maximum distance. This lack of perceiving a
more fine-grained difference is problematic. It implies that any model based on SHD
is potentially inaccurate for trees of unobserved complexity. The TED and PhD tend to
see larger distances for more complex trees. This is obvious for TED: Complex trees
require more operations to be transformed into each other. The weaker effect in case
of the PhD can also be explained: Complex trees may produce phenotypic behavior
that is more diverse, but the probability to produce redundancies also rises.
With regard to the computational effort, we note that TED is by far the most expensive
measure. It is followed by the PhD, and the cheapest measure is SHD1. While the
specifics strongly depend on the implementation, we note that the TED required at
least an order of magnitude more computation time than the other distance measures.

9.1.4 Case Study
Experimental Setup Symbolic Regression Test Problems: As test cases, we selected
six SR problems. We chose the Newton, sine-cosine, Kotanchek2D, and Salustow-
icz1D problems as used by Flasch [90] and the sqr and sqr+log problem as used by
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Figure 9.4: Image plot of the different tree distance measures. Each image cell is the cell of
a distance matrix. The trees are sorted by their complexity (tree depth and number of nodes).
Trees in the lower left corner are less complex than those in the upper right. The plots in
the lower right and lower center depict equally-weighted combinations of the corresponding
distances. The tree depth is annotated in red at the bottom of each plot. Extended from a figure
in [272].

Kattan and Ong [145]. All problem configurations remained unchanged, i.e., operator
set, data set size, and bounds for variables were chosen as defined in the cited works.
We did not evaluate the derived symbolic expressions on an additional test set. This
was due to the goal of this case study. We wanted to determine how well we could learn
and then exploit the relation between trees, symbolic expressions, and the respective
fitness. The generalizability of each individual fitness evaluation was not important for
that purpose.
Lower level optimization of the constants: To optimize the lower level objective func-
tion, we selected the locally biased version of the DIRECT algorithm [94, 139] for a
global search. DIRECT used 1000 × dc evaluations of the objective function. The
results of DIRECT were further refined with a Nelder-Mead local search [189] (also
1000× dc evaluations).
Upper level optimization of the structure: All algorithms received a budget of 100
upper-level objective function evaluations to emulate an expensive optimization prob-
lem. We used Random Search (RS) and a model-free EA as baselines (cf. Section 2.1).
The corresponding operators were taken from the rgp package [91].
The RS and the EA created new individuals via randfuncRampedHalfAndHalf,
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parameterized with a maximum tree depth of 4 and a probability to generate constants
of 0.2. This procedure creates expressions with maximum tree depth half of the time.
Else, the tree is randomly grown, which implies that each new node has a probability
of 0.5 to become a terminal node (leaf).
Furthermore, the EA employed crossoverexprFast for recombination, which
randomly exchanges subtrees. For mutation, mutateSubtreeFast was used. The
parameters of the mutation operator were specified as follows: 0.1 (probability to insert
a subtree), 0.1 (probability to delete a subtree), 0.1 (probability of creating a subtree
instead of a leaf), 0.2 (constant generation probability), and 4 (maximum tree depth).
Since constant coefficients were not considered at the upper level, the respective bounds
in the operator were both set to one. That is, a “1” is used as a placeholder for the
constant coefficients. This is convenient because a value of one is also used in the
computation of the PhD.
We employed a standard EA (based on optimEA in the CEGO package [263]) that
used the above-described operators. The EA used truncation selection. A fixed number
of children was created in each generation. The population size and the number of
children were tuned (see Section 9.1.4).
In addition to the model-free baselines, the upper level problem was also solved by
CEGO (see Algorithm 4). Four different variants were tested: One with each of the
single distance measures (TED, PhD, SHD2) and one variant with the combined kernel
given in Eq. (9.4). The model was trained within 1, 000 likelihood evaluations (via
DIRECT). An EA was used to search the surrogate model with 10, 000 evaluations of
the expected improvement criterion in each iteration. CEGO was initialized with 20
random trees that are created with randfuncRampedHalfAndHalf.
For the analysis, we recorded the best individual for each run. In addition, we recorded
the weights used for the linear combination of the distances in each iteration, to eval-
uate the contribution of each distance function over the runtime. Each algorithm run
was repeated 20 times.

Algorithm Tuning We decided to tune some potentially sensitive parameters to al-
low for a more fair comparison between the model-based and model-free algorithm.
The model-free algorithm’s population size npop and number of children noff pro-
duced in each iteration were tuned. All combinations of npop ∈ {5, 10, 15, 20} and
noff ∈ {1, 2, 3, 4, 5} were tested. The optimization performance was expected to be
sensitive to these parameters, due to the extremely small fitness evaluation budget.
For CEGO, we did not tune npop and noff. Due to CEGO’s larger complexity, we
decided to set the parameters based on experience only, without a detailed tuning. In
fact, due to the larger number of evaluations (of the surrogate model), the algorithm
should be less sensitive to npop and related parameters (cf. the results in Section 5.3).
Since 10, 000 evaluations of the surrogate model were allowed, a relatively large npop =
200 was given to the respective EA, and noff = 10. Instead of these parameters, the
comparison of the different distances and kernels may be viewed as the tuning effort
invested for CEGO.
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Figure 9.5: Box plot of best-observed values after 50 and 100 evaluations. The performances
of CEGO with single distances are denoted by the respective abbreviations. The linear com-
bination is denoted by “combine”. Potentially indefinite distances are not explicitly corrected.
The depicted data has been subject to a square-root transformation for the sake of readability.

We also performed preliminary experiments with the Mean Square Error (MSE) in-
stead of the correlation-based measurements in Eqs. (9.1) and (9.2). The MSE-based
experiments yielded rather poor results with CEGO. This may partly be explained by
the penalty for infeasible candidates. The penalty value is very difficult to set for the
MSE case. A poor choice may severely impair the ability to train a good Kriging model
because of strong jumps or plateaus in the fitness landscape. Overall, the behavior of
the correlation-based measures seemed to be more benign. While our preliminary ex-
periments were not very detailed, they can be counted as additional tuning effort. They
informed the choice of the correlation measure used in the phenotypic distance.

Analysis and Discussion Box plots of the best-observed fitness after 50 and 100
evaluations are shown in Fig. 9.5. The reported results concern the tuned, model-
free EA that achieved the best mean rank on all problems (npop = 15, noff = 1).
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Table 9.1: Pairwise statistical comparison of the performance on all SR instances, where a 1
indicates that the algorithm of the corresponding row is better than the one in the correspond-
ing column, while−1 indicates that the row-algorithm is worse. A zero indicates no significant
differences. Here, the non-CNSD distances were not corrected. The last column provides a
summarizing rank for the corresponding algorithms in each row.

Algorithm RS EA combine PhD SHD2 TED rank

RS 0 -1 -1 -1 -1 0 4
EA 1 0 -1 -1 1 1 2

combine 1 1 0 0 1 1 1
PhD 1 1 0 0 1 1 1

SHD2 1 -1 -1 -1 0 1 3
TED 0 -1 -1 -1 -1 0 4

The minimal noff makes sense because it allows for many iterations despite the small
budget.
It seemed that the CEGO variants based on the PhD and the linear combination out-
performed their competitors. TED and SHD on the other hand did not perform well.
They were sometimes even worse than the model-free EA. Mostly, this behavior was
consistently observed for results after 50 and 100 function evaluations.
Following the descriptions in Appendix A, we supplemented the visual analysis with
the non-parametric Friedman test and the Conover post hoc test. We tested for dif-
ferences in performance after 100 objective function evaluations, using each SR prob-
lem instance as a block. The initial Friedman test produced a p-value close to zero
(< 10−16). The result of a pairwise comparison via the Conover post hoc test with a
significance level of α = 0.05 is shown in Table 9.1. This confirmed the conclusions
from the visual analysis: The CEGO variants with PhD or with a linear combination
of the distances outperformed all other configurations. This is consistent with previous
results by Hildebrandt and Branke [121], who report that a similar phenotypic distance
achieved better results than SHD1.
Given these results, it could be assumed that the PhD contributed most strongly to the
favorable result of the linear combination. This assumption seemed to be true in the
beginning of each run, but Fig. 9.6 shows a very strong drift towards the two genotypic
distances later on. What is the reason for this behavior? One hint is given in Fig. 9.7.
That figure shows LOESS fits of the algorithm performances1. Importantly, the model
with the PhD started to give deteriorating suggestions after roughly 35 function evalu-
ations. The same deterioration was not observed for the other approaches. The linear
combination seemed to avoid this issue by shifting to the genotypic distances.
One potential reason for this behavior is the definiteness of the distances. All three
distances are non-CNSD. As discussed in Chapter 7, this may not necessarily have
the same effect for every distance. Hence, we presumed that the PhD produced poor
results because it was more strongly affected by its lack of definiteness.

1LOESS models are locally weighted polynomial regression models [64].
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Figure 9.6: Average normalized weights for the different kernels/distances, determined by the
linear combination via MLE. Without explicit correction of indefinite matrices.
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Figure 9.7: Each function evaluation by different CEGO variants without CNSD-correction
(dots), with a LOESS fit (lines), and its 95% confidence interval (shaded).

Correcting Definiteness As a consequence, we repeated the experiments. This time,
we corrected the indefinite kernels explicitly. We used CNSD-correction with spectrum
flip and repaired matrix conditions via re-transformation (cf. Chapter 8).
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Figure 9.8: Box plot of best-observed values after 50 and 100 evaluations. The performances
of CEGO with single distances are denoted by the respective abbreviations. The linear com-
bination is denoted by “combine”. Potentially indefinite distances are corrected via spectrum
transformation. The depicted data has been subject to a square-root transformation for the
sake of readability.

As Fig. 9.8 indicates, the performance of some CEGO variants improved. The strongest
improvement was observed for Kotanchek2D. A statistical test procedure yielded sim-
ilar results as for the uncorrected case, with two exceptions. CEGO+TED was now
evaluated to be better than RS, and no significant differences between CEGO+SHD2
and the EA were found. The ranking changed accordingly: The EA and CEGO+SHD2
shared the second rank, CEGO+TED ranked third, and RS ranked last. In summary,
the correction of definiteness improved the CEGO variants in some cases.
In a much more drastic way, the correction affected the weights determined by the
linear combination, as depicted in Fig. 9.9. Except for the sine-cosine instance, the
PhD was favored nearly exclusively. No shift to the genotypic distances was observed.
This suggests that the previously observed decline of the PhD’s weights was largely
due to indefiniteness. SHD2 and TED were mostly included to counterbalance that
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Figure 9.9: Average normalized weights for the different kernels/distances, determined by the
linear combination via MLE. With CNSD-correction.
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Figure 9.10: Each function evaluation by different CEGO variants with CNSD-correction
(dots), with a LOESS fit (lines), and its 95% confidence interval (shaded).

effect. This was further confirmed by the LOESS fits shown in Fig. 9.10. The strong
deterioration observed in Fig. 9.7 is no longer present.
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9.1.5 Summary
We applied CEGO to symbolic regression, using a tree representation. This was con-
nected to two core research questions, to be answered as follows.

Answer 9.1. Tree distances. What distances are available, and what properties do
they have?

We identified two types of distances. Genotypic distances operate on the tree struc-
tures themselves, whereas phenotypic distances attempt to compare the behavior or
outcome of these structures. For our symbolic regression test problem, we devised
a phenotypic distance based on the correlation of symbolic expressions. In addition,
two variants of genotypic distances were investigated, SHD and TED.

Answer 9.2. Performance. What impact do these distances have on the performance
of an SMBO algorithm?

The overall best results were produced by the PhD. This was to be expected because
the phenotypic behavior is much closer to the actual fitness. The genotypic distances
may be problematic, e.g., when changes in the genotype do not lead to according
changes in the fitness. Most importantly, all investigated distances are non-CNSD.
Especially, the performance of a PhD-based model seemed to be affected by this
lack of definiteness. A linear combination was revealed to mitigate this by shifting
to the less problematic genotypic distances. Even better, a correction via spectrum
flip was able to avoid this issue more comprehensively.

Overall, the idea of phenotypic distances seems to be very promising. Not only did
the PhD yield good result for our use case, it could also be extended to other search
domains, such as neuroevolution [96]. First tests towards that goal are described by
Stork et al. [239].
Still, our results indicate that genotypic distances should not be completely disre-
garded. A diverse mixture of distances may help to mitigate any problems occurring
with individual distances. With that said, we would often prefer more simple genotypic
distances (e.g., the SHD) instead of edit distances (e.g., the TED). The costs involved
in computing some edit distances may render a surrogate model infeasibly expensive.
This is especially problematic for modeling in graph spaces: The graph edit distance
is NP-hard [274].
Further research should investigate how well our results apply to other problem classes.
Ideally, these should include actual real-world problems. While SR is a challenging
task, it is unclear whether the specific challenges posed are actually representative for
many real-world problems, e.g., from engineering. Frequently, engineering problems
concern the optimization of geometric shapes (e.g., airfoil shapes or the shape of ship
hulls). In some cases, tree representations may be of interest. Trees can describe com-
plex geometries based on simple shapes using constructive solid geometry, as shown in
Fig. 9.11. This kind of free-form shape optimization may be an interesting application
for our tree-kernel-based models. Good phenotypic distances would of course depend
on a specific application. Measures like the volume of an intersection of two objects
could be an interesting starting point.
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Figure 9.11: Two-dimensional example for a more complex shape made from simple elements
via a constructive solid geometry tree.

9.2 Modeling Hierarchical Variables

A particular challenge for SMBO are hierarchical search spaces, which are spanned
by conditional variables. A conditional variable has an effect on an objective function
f(x), if some condition is fulfilled. We refer to this as the conditional variable being
active. Respectively, if the condition is not fulfilled, the variable is inactive. Hierarchi-
cal search spaces can be depicted as directed acyclic graphs. Nodes are the variables
and edges denote the conditions. The edges point from the trigger variables to the
conditional variables [129].
Algorithm tuning is one field where conditional variables are a frequent occurrence.
Consider, e.g., the tuning of an EA. The step-size of a specific mutation operator only
matters if that operator is actually used. Here, the step-size is the conditional variable.
The condition is based on a binary trigger variable that decides on the inclusion of
the mutation operator. Variable activity is also an issue in the tuning of neural net-
works [241]. Other potential applications can be found in engineering. Frequently,
some process variable may only be active or relevant, if other variables or even envi-
ronmental factors satisfy a condition.
Mostly, SMBO approaches for hierarchical search spaces can be categorized in three
of the six strategies discussed in Chapter 3: the naive approach, mapping, and kernel-
based models.

• Naive: There is no strict necessity to incorporate any information about activity

Section 9.2 is based on the article “A First Analysis of Kernels for Kriging-based Optimization
in Hierarchical Search Spaces” by Zaefferer and Horn [270]. It was prepared in a coequal
cooperation with Daniel Horn, who especially contributed to the statistical and visual analysis
of the experimental investigation. Since this article was written in equal parts by both of its
authors, it is not discussed entirely. We discuss the kernels contributed by the author of this
thesis in more detail (with few verbatim adoptions) and briefly summarize the experimental
results. An additional kernel (Wedge-kernel) is proposed.
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in the SMBO framework. This is technically feasible, yet ignores potentially
helpful information about the problem landscape.

• Mapping: One standard approach is to map to a non-hierarchical search space
by imputing some constant value whenever a variable is inactive [246, 125, 198].
We denote this as the imputation approach.

• Kernel-based: The activity information can be integrated into the model’s ker-
nel. One example is the Arc-kernel [129, 241]. Otherwise, the hierarchical
dependencies can be employed to devise tree-based, hierarchical Gaussian pro-
cesses [34, 33, 133].

Following the main theme of this thesis, we are interested in using a kernel-based
approach. The Arc-kernel [129, 241] is already a quite promising solution. Yet, we
argue that it may not be an optimal solution in all cases. Hence, we want to investigate
the following question.

Question 9.3. Hierarchical kernels. What kernels should be used to model hierarchi-
cal search spaces?

We discuss the existing Arc-kernel and propose alternatives.

9.2.1 Kernels for Hierarchical Search Spaces
In the following, our notation is based on the article by Hutter and Osborne [129]. A
function δi(x) is used to denote the activity condition. That is, if δi(x) = false, the
i-th variable xi of the candidate solution x is inactive. Correspondingly, δi(x) = true
implies that the same variable is active. For all kernels we discuss, the function δi(.)
could as well be dependent on environmental or extraneous variables, which are not
present in x. This may be especially of interest in potential engineering applications.
For the sake of simplicity, we stick to the δi(x) notation.
As throughout most of this thesis, we use an exponential kernel. Here, it has the form
k(x, x′) = exp(−

∑m
i=1 di(x, x

′)). We discuss and propose different choices for the
distances di(x, x

′).

The Arc-kernel The Arc-kernel has been proposed by Hutter and Osborne [129] to
enable modeling of conditional variables. When comparing a variable from two data
samples xi and x′i, the Arc kernel assumes:

• If both are inactive (δi(x) = δi(x
′) = false), then the distance is di(xi, x

′
i) = 0.

This is obvious: If the compared variables are both inactive, they both have the
same impact on the observed variable y (i.e., no impact).

• If both are active (δi(x) = δi(x
′) = true) the distance depends on the values of

xi and x′i.
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li ui
xi hi(x)

πρi

hi(li) hi(x)
if active

hi(ui)θi

hi(x)
if inactive

Figure 9.12: The mapping function hi(x) of the Arc-kernel, which embeds conditional vari-
ables in a two-dimensional space by placing active samples on an arc and inactive samples
on the center of the corresponding circle. Left: the original conditional variable. Right: the
embedding.

• Finally, if only one variable is active (δi(x) 6= δi(x
′)), then Hutter and Osborne

assume that the samples are incomparable. Therefore, they propose that the
distance in this dimension should be a constant.

We will later show a more direct implementation of these assumptions (Ico-kernel).
However, it turns out that this direct implementation is non-CNSD. Hutter and Os-
borne avoid this by finding a suitable embedding function hi(x). This function maps
the hierarchical data into a Euclidean space, so that a distance di(x, x

′) can be written
as di(x, x

′) = dEuc(hi(x), hi(x
′)). By making sure that the embedding respects the as-

sumptions listed above, Hutter and Osborne derive a CNSD distance that also satisfies
these assumptions [129]. For continuous x, the mapping function is:

hi(x) =


[
0 0

]T
, if δi(x) = false

θi

[
sin(πρi

xi
ui−li

) cos(πρi
xi

ui−li
)
]T
, otherwise.

(9.5)

Here, ui, li are the upper and lower bounds of the i-th variable. The mapping func-
tion hi(x) embeds the conditional variable in a two-dimensional space, as depicted in
Fig. 9.12. The depicted arc shape of the embedding lends this kernel its name [241].
The resulting CNSD distance function is:

dArci(x, x
′) =


0, if δi(x) = δi(x

′) = false
θi, if δi(x) 6= δi(x

′)

θi

√
2− 2 cos(πρi

xi−x
′
i

ui−li
), if δi(x) = δi(x

′) = true.
(9.6)

The kernel variables θi ∈ R+ and ρi ∈ [0, 1] can be determined by MLE. A very similar
distance for categorical variables is also described by Hutter and Osborne [129]. In the
experiments, we used the square root of the Euclidean distance in the embedded space,
to be consistent with the other kernels.

Indefinite Conditional Kernel As an alternative, we propose the Indefinite Condi-
tional kernel (Ico-kernel), which implements the assumptions of the Arc-kernel in a
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more direct way:

dIcoi(x, x
′) =


0, if δi(x) = δi(x

′) = false
ρi, if δi(x) 6= δi(x

′)
θidi(xi, x

′
i), if δi(x) = δi(x

′) = true.

Just like the Arc-kernel, dIcoi(x, x
′) is zero if both samples are inactive, it is a constant

(ρi) if activity differs, and it directly depends on the samples if both are active. Here,
di(xi, x

′
i) is an appropriate distance for the respective variable. For instance, if xi ∈

R then di(xi, x
′
i) = (xi − x′i)

2. Or, if xi is a categorical variable, then di(xi, x
′
i)

could be the Hamming distance. The parameter ρi ∈ R+ can be determined by MLE.
Unfortunately, this kernel is indefinite, as implied by the name we chose.

Proposition 3. dIcoi(x, x
′) is not CNSD.

Proof. Remember that CNSD functions satisfy cTDc ≤ 0, for all distance matrices
DIco and all c ∈ Rn subject to

∑n
i=1 ci = 0 (cf. Section 4.4). We prove that this

does not hold with an example. For an arbitrary conditional variable xi, we choose the
kernel parameters θi = 10 and ρi = 1. Three samples are compared: x(1)i = 1, x(2)i = 2

and x(3)i = 1. The first two are active, the last is inactive (due to some condition on a
different variable xj). For this example, we use the square deviation when comparing
active variables, di(xi, x

′
i) = (xi − x′i)2. This yields the distance matrix

DIcoi =

 0 10 1
10 0 1
1 1 0


With c =

[
0.5 0.5 −1

]T, we receive cTDIcoic = 3 > 0. Hence, the distance is not
CNSD.

To account for the lack of definiteness in the experiments from the original article [270],
we also tested one of the correction methods from Chapter 8. We chose a CNSD-
correction via spectrum flip, with repair by re-transformation. We denote this corrected
variant as the IcoCor-kernel.

Imputation Kernel So far, all kernels that we discussed are based on the main ideas
of the Arc-kernel. Importantly, the Arc-kernel assumes that an active and an inac-
tive sample cannot be compared, resulting into a constant distance (in the conditional
dimension). This is a rather careful assumption. It prefers to ignore any knowledge
encoded in the active variable, rather than employing it when it may be misleading or
irrelevant.
However, there may be some cases where this is not true. In fact, since one sample
is active, small changes to that sample lead to a change in the observed variable. The
Arc-kernel does not respect this. More formally, consider the case where

δi(x) = false and δi(x
′) = δi(x

′′) = true,
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where x′i+h = x′′i and h is some small perturbation. Then, the corresponding distances
are dArci(x, x

′) = dArci(x, x
′′), which to some extent contradicts that f(x′) 6= f(x′′).

This observation also applies to the Ico-kernel variant.
Hence, we propose a different assumption about the distance of conditional variables:
If δi(x) 6= δi(x

′), then the distance in dimension i should depend on the active variable,
but not on the inactive one.
We propose to implement this assumption into a distance by comparing the active
variable against a parameter ρi, i.e.,

dImpi(x, x
′) =


0, if δi(x) = δi(x

′) = false
θidi(x

′
i, ρi), if δi(x) = false 6= δi(x

′)
θidi(xi, ρi), if δi(x) = true 6= δi(x

′)
θidi(xi, x

′
i), if δi(x) = δi(x

′) = true,

where di is an appropriate distance for the i-th variable. The kernel parameter ρi has
the same data type as xi. That is, if xi ∈ R then ρi ∈ R, and we could use the Euclidean
distance. Accordingly, if xi is categorical then ρi is also categorical, and we could use
the Hamming distance. While the data type is identical, the bounds ui and li need not
be identical for xi and ρi. In fact, it may be recommendable to use a wider range of
values for ρi, to account for cases where good candidates for imputation lie outside the
original bounds. Similarly, categorical ρi should have an additional category (or level),
to account for cases where none of the categories of xi are good imputation candidates.

Proposition 4. dImpi(x, x
′) is CNSD if the underlying distance di(xi, x

′
i) is CNSD.

Proof. To prove this, we follow the same approach used for the Arc-kernel by Hutter
and Osborne [129]. We need to show that dImpi(x, x

′) is equivalent to a CNSD dis-
tance in some embedding space defined by the mapping function hi(x). That means,
we should be able to write dImpi(x, x

′) = di(hi(x), hi(x
′)), where di(., .) is a CNSD

distance function.
For dImpi(x, x

′), the mapping function is

hi(x) =

{
xi, if δi(x) = true
ρi, otherwise.

Hence, the resulting distance dImpi(x, x
′) is CNSD, if di(xi, x

′
i) is CNSD.

The mapping function hi(x) embeds the conditional variable in a one-dimensional
space, as depicted in Fig. 9.13.
This kernel is closely related to the imputation approach mentioned in the introduction
of this chapter. It imputes a value ρi for every inactive variable. Therefore, we call it
the imputation kernel or Imp-kernel. The main difference to the imputation approach is
that the Imp-kernel does not choose the imputed value a-priori. Rather, it is determined
by an appropriate training method (i.e., MLE in case of Kriging, or cross-validation in
case of SVM).
In comparison to the Arc- and Ico-kernels, the Imp-kernel’s main drawback is the
nature of the parameter ρi. Firstly, the bounds on ρi may be difficult to set. Secondly,
ρi may be a categorical parameter. Both issues complicate the training procedure.



9.2. MODELING HIERARCHICAL VARIABLES 141

li ui
xi hi(x) hi(li) hi(ui)

hi(x) if active

hi(x) = ρi if inactive

Figure 9.13: The mapping function hi(x) of the Imp-kernel, which embeds conditional vari-
ables in a one-dimensional space by placing active samples on a line and inactive samples at
a single point. Left: the original conditional variable. Right: the embedding.

The Imputation-Arc Kernel In practice, it may be a challenge to determine whether
the Imp- or Arc-kernel should be preferred, especially when the problem is a true
black-box. For such a case, we suggest employing the methods from Chapter 6, to
combine or select the correct kernel. Specifically, we suggest the ImpArc-kernel

kImpArc(x, x
′) = exp

(
−

m∑
i=1

β1,idArci(x, x
′) + β2,idImpi(x, x

′)
)
,

where β1,i, β2,i ∈ R+ are determined by MLE. Clearly, other kernels may also be
included, but potentially redundant kernels should be avoided (e.g., Ico-, IcoCor-, and
Arc-kernel).

Wedge Kernel Finally, we propose a more general kernel that is based on the same
assumptions as the Imp-kernel: the Wedge-kernel. We will show that the Imp-kernel
is a special case of the Wedge-kernel. Furthermore, the Wedge-kernel has similarities
to the Arc-kernel, since it also maps to a two-dimensional space.
The Wedge-kernel for xi ∈ R uses the embedding, or mapping function

hi(x) =

{ [
0 0

]T
, if δi(x) = false[

θ1,i + v
(
θ2,i cos(ρi)− θ1,i

)
vθ2,i sin(ρi)

]T
, otherwise,

(9.7)

with the scaled variable value v = (xi − li)/(ui − li). Here, the kernel parameters
are ρi ∈ [0, π], θ1,i ∈ R+, and θ2,i ∈ R+, specifying the angle and two adjacent
side lengths of a triangle. Instead of mapping active samples onto an arc, they are
mapped onto one side of a triangle, or wedge2. The inactive samples are mapped to the
opposing corner of the wedge, similarly to the Arc-kernel. The mapping is visualized
in Fig. 9.14.
Just as with the Imp-kernel, the distance between an active and an inactive sample
depends only on the active one. In contrast to the other kernels, we need an additional
third parameter to specify the shape of the wedge. This may be a drawback.
When i) θ1,i = 0, ii) θ2,i = 0, iii) ρi = 0, or iv) ρi = π, the wedge collapses to a
line segment and a point that both lie on the same line. This implies a collapse into a

2We use the term “wedge” to avoid confusion with the triangle kernel ktri(xi, x
′
i) = 1− |xi − x

′
i|.
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li ui
xi hi(x)

ρi

hi(ui) hi(x)
if active

hi(li)θ1,i

θ2,i
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Figure 9.14: The mapping function hi(x) of the Wedge-kernel, which embeds conditional vari-
ables in a two-dimensional space by placing active samples on a side of a triangle (wedge) and
inactive samples at the opposing corner. Left: the original conditional variable. Right: the
embedding.

one-dimensional space, identical to the embedding of the Imp-kernel. Hence, the Imp-
kernel is a special case of the Wedge-kernel. Here, the four cases i)-iv) define where
the point lies in relation to the line segment (on the upper bound, on the lower bound,
outside of the bounds, and inside of the bounds).
Based on the squared Euclidean distance, the Wedge-kernel can be written as

dWedgei(x, x
′) = ‖hi(x)− hi(x

′)‖2 =

0, if δi(x) = δi(x
′) = false(

θ1,i + v̂
(
θ2,i cos(ρi)− θ1,i

))2
+
(
v̂θ2,i sin(ρi)

)2
, if δi(x) = false 6= δi(x

′)(
θ1,i + v

(
θ2,i cos(ρi)− θ1,i

))2
+
(
vθ2,i sin(ρi)

)2
, if δi(x) = true 6= δi(x

′)(
xi−x

′
i

ui−li

)2 (
θ21,i + θ22,i − 2θ1,iθ2,i cos(ρi)

)
, if δi(x) = δi(x

′) = true,

with v̂ = (x′i − li)/(ui − li).

Proposition 5. dWedgei(x, x
′) for xi ∈ R is CNSD.

Proof. Again, we can employ the same approach as used for the Arc-kernel by Hut-
ter and Osborne [129]. We need to show that dWedgei(x, x

′) is equivalent to a CNSD
distance (here: squared Euclidean) in some embedding space defined by the mapping
function hi(xi). This function is given in Eq. (9.7). Hence, dWedgei(x, x

′) is CNSD.

Similarly to the Imp-kernel, a variant for categorical variables can be derived for the
Wedge-kernel. One simple idea would be the following mapping, which maps a single
categorical variable to a space spanned by a categorical variable and a real variable:

hi(x) =

{ [
ρi 0

]T
, if δi(x) = false[

xi θ2,i
]T
, otherwise.

where ρi is categorical and θ2,i ∈ R+. We can use a mixed distance in the embedding
space, with the scaled Hamming distance (θ1,iHD(xi, x

′
i), with θ1,i ∈ R+) for the
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categorical variable and Euclidean distance for the real variable. The corresponding
CNSD distance function for categorical variables is

dWedgeCati(x, x
′) =


0, if δi(x) = δi(x

′) = false
θ1,iHD(x′i, ρi) + θ2,i if δi(x) = false 6= δi(x

′)
θ1,iHD(xi, ρi) + θ2,i if δi(x) = true 6= δi(x

′)
θ1,iHD(xi, x

′
i) if δi(x) = δi(x

′) = true,

This distance function is closely connected to the real-valued variant. It can collapse to
a categorical variant of the Imp-kernel if θ2,i = 0. In addition, the distance between an
active and inactive sample depends on the active sample. Also, the scale of distances
between active samples, and between samples of mixed activity may differ, depending
on the parameterization.
The Wedge-kernel was not included in the original publication. Hence, it was also not
included in the experiments summarized in the following.

9.2.2 Previous Experiments
Experiments are required to determine how the proposed kernels behave in practice.
As a first step, we proposed a simple, artificial test function [270]:

f(x) = (x1 − c1)2 +

{
0 if x1 ≤ c3
(x2 − 0.5)2 + c2 else

, (9.8)

Here, the coefficients ci ∈ R control the behavior. The coefficient c3 defines when
the conditional variable (x2) becomes active. The coefficient c1 affects the location of
the optimum, which may lie in either the inactive or the active region. Importantly,
c2 controls whether the structure of the Imp-kernel fits to the objective function. For
instance, if c2 = 0, the active term (x2− 0.5)2 becomes zero for x2 = ρ = 0.5. Hence,
0.5 is an ideal value to be imputed. In other words, the imputation kernel is a good
fit if there exists a value xi = ρi for which the function behaves as if xi is inactive,
while it is actually active. We refer to the original article [270] for more details on the
experimental setup.
Four main conclusions were drawn from the experiments [270]. Firstly, incorporating
the hierarchical structure into the kernel was crucial for the optimization performance.
Experiments with a standard kernel performed worst. Secondly, the experiments con-
firmed that the Imp-kernel worked well when the objective function fit well to the
Imp-kernel’s structure (here: c2 = 0). Else, the Arc-kernel performed better. Thirdly,
the Arc-kernel, the Ico-kernel, and the IcoCor-kernel all produced similar results over-
all. Finally, a weighted sum of Arc- and Imp-kernel often achieved the middle ground
between their individual performances.
Hence, we answer the core question of Section 9.2:

Answer 9.3. Hierarchical kernels. What kernels should be used to model hierarchical
search spaces?
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If any expert knowledge suggests that the Imp-kernel is a good fit, it is recommend-
able to select that kernel. If expert knowledge suggests otherwise, the Arc-kernel
(or a variant of it) is probably more suited. When no expert knowledge is avail-
able, it may be attempted to derive this knowledge from the data, i.e., by learning a
weighted sum of the two kernels.

The Wedge-kernel was not tested in our experiments. Hence, we remark on it below.

9.2.3 Future Experiments

The artificial test function from Eq. (9.8) was a good first step, since it provided a very
transparent test case. It allowed understanding why the tested algorithms behaved as
they did.
Nevertheless, we do not know how relevant this simple test function is for real-world
problems from algorithm tuning or engineering. Therefore, tests with more relevant
problems are an obvious suggestion for future work. Especially, algorithm tuning is
a promising use case because it is more easily accessible than most applications from
the engineering domain.
The Wedge-kernel is likely to avoid shortcomings of both the Imp-kernel and the Arc-
kernel. The Imp-kernel may force a model to be smooth when transitioning from the
active to the inactive region, since distances may have to become zero close to the
boundary. This is relaxed by the Wedge kernel, which allows some minimal distance
to remain. At the same time, the Wedge kernel avoids the Arc-kernel’s assumption
of constant distance between inactive and active samples. Hence, the Wedge-kernel
seems very promising. Experiments should verify whether these promising features
manifest in terms of good performance, or whether the need to determine an additional
kernel parameter outweighs the benefits.
Finally, it may be of interest for future work to define an encompassing kernel that
includes the Arc- and Wedge-kernel as special cases.

9.3 Simulation for Test Function Generation

Throughout this thesis, algorithms and models were developed to provide good solvers
for expensive, discrete optimization problems. We mostly used artificial test functions
to evaluate, compare, and understand these developments. Test functions are a weak

Section 9.3 is mostly based on “Simulation Based Test Functions for Optimization Algo-
rithms” by Zaefferer et al. [268]. The text is in parts taken verbatim from that publication.
However, it was largely rewritten and extended to 1) give a clearer motivation supported by vi-
sualizations, 2) add some additional remarks on related approaches, 3) discuss the advantages
and disadvantages in a more structured way, 4) provide more illustrative examples to explain
how the test function generator works, and 5) show results from an additional experiment with
a random forest model.
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point of any experimental procedure: It is not always clear whether they are a good
basis to judge algorithm performance.
This issue is not limited to this thesis. In general, numerical tests are a crucial element
of the development, improvement, and understanding of optimization algorithms. This
leads to our main research question for this section:

Question 9.4. Generating test functions. How can we generate test functions that
fulfill requirements such as difficulty and real-world relevance?

To provide a potential solution, this section introduces a test function generator based
on Kriging simulation. This framework may be used to generate diverse and relevant
benchmarks for discrete SMBO algorithms, but also applies to other problem domains.

9.3.1 Motivation
It is particularly difficult to provide test functions for expensive optimization problems,
which are in the focus of this thesis. Expensive problems often require that the experi-
menters have access to complex simulation codes. The simulation codes are also often
confidential if they are developed by an industry partner. Even worse, if real-world
experiments are performed, access to laboratory equipment or an industrial plant may
be needed. This access may be available for a single research group, but not the whole
community. Even if researchers have access to a simulation or experiment, the costs
for evaluations are large. This often prohibits comparing a larger number of algorithms
or configurations.
One approach to this issue is to employ sets of artificially created test functions (cf. [183,
259]). This procedure is well-established in continuous optimization. In continuous
optimization, test functions can be composed by combining step functions, linear func-
tions, convex functions and sinusoidal functions. Such compositions enable to create
varied test functions with different properties. Yet, it is not guaranteed that the resulting
functions are actually representative for real-world problems.
This is an essential issue for the methods discussed in this thesis. Test functions for ex-
pensive, combinatorial problems are even more problematic than those for continuous
problems. We are not aware of any real-world, expensive, combinatorial optimization
problems that have been made openly available. Thus, most of the benchmark prob-
lems that were used in this thesis are well known problems that are cheap to compute,
e.g., the TSP. Just as in the continuous case, it is questionable whether performances
estimated for these test problems are actually representative for real-world problems.
Thus, we would like to propose a generator that produces test functions with desirable
features. Numerous important test function features are listed in the literature, e.g.,
modality, dimensionality, continuity, linearity, separability, and scalability [73, 259,
113]. We focus on the following criteria. Importantly, some of these criteria apply to a
test function generator rather than individual (or sets of) test functions.

(C.1) Difficulty: This feature is related to the statement by Whitley et al. [259]. They
state that test functions should be “resistant to hill-climbing”. That is, prob-
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Figure 9.15: Examples of continuous minimization problems that may be too difficult (left) or
too easy (right) to be used as meaningful test functions for black-box optimization algorithms.
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Figure 9.16: Examples for two diverse sets of test functions.

lems should not be too easy to solve. If a problem has low difficulty, even a
poor algorithm may perform well. Extending this notion, exceedingly difficult
problems should also be avoided. If a problem is too difficult (e.g., needle in
the haystack), all algorithms are equally bad. Figure 9.15 illustrates potential
examples for these cases.

(C.2) Diversity: Diversity implies that individual instances in a set of test functions
should not all be the same (or very similar). Rather, test functions should be
varied and randomized. This feature may apply to sets of test functions as well
as test function generators. Diverse, randomized test instances enable to select
separate instances for the tuning of algorithms and for the comparison of algo-
rithms. Ideally, test functions for a comparison are not known a priori, that is,
when planning the experiment. This reflects a standard in machine learning,
where data sets are partitioned into a training, a validation, and a test set [114].
On the other hand, too much diversity may also be detrimental. If different test
functions have nothing in common, it is unlikely that any general conclusions
can be drawn from the results. Figure 9.16 shows some examples of test func-
tions that may be sufficiently diverse.
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(C.3) Flexibility: In addition to the diversity of instances, test functions should neither
be restricted to one rigid problem class. Rather, a test function generator should
be able to reflect a varied set of problem classes. Flexibility is also used in ma-
chine learning and can be linked to the number of parameters that are necessary
to specify a model [132]. The term “generalizability” is used in a similar way
by Bartz-Beielstein [21]. For example, a flexible function generator would be
able to produce functions on both sides of Fig. 9.16.

(C.4) Relevance: The test problems should reflect real-world problem behavior, so that
performance estimates are more meaningful to practitioners. If an algorithm
is developed for a certain application, the test functions should reproduce the
behavior of the application as much as possible.

(C.5) Cost: Generated test functions should be inexpensive to evaluate, allowing for
numerous tests and comparisons.

While all criteria are important, it is likely that they have to be traded off against each
other in practice. For instance, some problems may become more costly (C-5) the
more relevant to a real-world problem they are (C-4).
Test function generators that satisfy the criteria (C.1)-(C.5) to some extent have been
suggested in previous research [218, 204, 21, 90, 88, 72]. These approaches attempt to
learn data-driven regression models of the objective function. The resulting models are
used as test functions. Unfortunately, nearly all data-driven regression or interpolation
models result into some form of smoothed function landscape. Hence, the resulting
test functions may be easier to solve than the underlying real-world problems.
Therefore, test function generators based on data-driven models should respect the
following criterion:

(C.6) Ruggedness: test functions derived from data-driven models should not smoothen
the problem landscape.

This also agrees with Preuss et al. [204], who state that “accuracy is much less im-
portant than topology”. In other words, we are less interested to receive data-driven
test functions that predict accurate function values. Rather, we want test functions
that behave as the real objective function (e.g., in terms of ruggedness or number of
optima).
In contrast to previous approaches, we attempt to avoid problems with smoothing (C.6)
by using simulation instead of estimation of Kriging models. In addition, simulation
is a principled way to generate diverse test functions (C.2). We introduce these ideas
with simple, continuous examples. The benefits and practical limits of our approach
are demonstrated in a case study based on a real-world data set.

9.3.2 Related Approaches
A very basic and inexpensive way to generate test functions is to use simple mathemat-
ical expressions. One classical example is the sphere function f(x) =

∑
(xi)

2, which
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reflects the behavior of many continuous optimization problems in the vicinity of the
optimum [183]. Sets of such functions are often collected to form a larger set of test
functions, e.g., combining functions like the sphere, Branin, or Rosenbrock function.
The advantage of fixed test function sets is that studies become comparable. Hence,
runs of “old” algorithms that have already been tested need not be repeated to compare
them to “new” algorithms. A further benefit is that the properties and behavior of these
functions are known. This allows drawing conclusions about an algorithm’s ability to
handle certain types of challenges (e.g., non-separable problems). The disadvantage
of fixed test function sets is that they are known a priori. This allows designing or
tuning algorithms only for these specific functions. Hence, the algorithms may be
over-adapted to the structure of the function set. This issue is analogous to the problem
of overfitting in statistics.
We denote methods that create classical test function sets [73, 183, 228] as synthetical.
By this, we imply that the functions are designed from scratch, combining individual
function elements to produce certain behavior (e.g., multimodality, non-separability).
The well known Comparing Continuous Optimizers (COCO) platform or Black-Box
Optimization Benchmark (BBOB) [112] relies on a fixed, synthetical set of artificial
test functions [113]. Furthermore, BBOB attempts to generate randomized, varied
problem instances by, e.g., translating and rotating the underlying functions [112].
Gallagher and Yuan [97] propose the Gaussian Landscape Generator (GLG). The
GLG is a synthetical approach that produces random combinations of Gaussian curves
with different centers, widths, and rotation. At each point in the search space, the
fitness is the maximum over all Gaussian curves. The number of local optima can
be controlled via changing the number of Gaussian curves. Since the orientation and
placing is randomly determined, the GLG can generate numerous, diverse test func-
tions. While this satisfies C.1 and C.2, it is unclear whether the resulting functions are
representative for real-world problems. Similar test function generators are described
by Barrera and Coello [19].
Another synthetical test function generator is the Krigifier that derives its name from
the Kriging model. The Krigifier generates random Gaussian processes [248]. The user
can specify the trend and covariance structure, and the Krigifier generates a realization
with these properties. Since the number of potential model realizations is infinite, this
allows for the generation of diverse functions sets. The difficulty can be tuned with the
parameters of the covariance function. As for most synthetical test function generators,
the real-world relevance is not clear.
In contrast to these synthetical approaches, we denote data-driven test function sets
as observational, because they are derived from observations of real functions. As an
early example, Rudolph et al. [218] propose the tuning of an optimization algorithm’s
performance via a Kriging surrogate model. A surrogate model of the expensive sys-
tem is used as a test function for the optimization algorithm. Their approach has also
been used to tune the CMA-ES for a set of artificial benchmarks [204]. Preuss et
al. [204] conclude, “that the concept of using a surrogate model approach for tun-
ing optimization algorithms possesses a fruitful and as yet unexplored potential for
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optimization under scarce resources”.
An observational approach is also discussed by Bartz-Beielstein [21]. The proposed
benchmarking framework includes randomized test function generation based on data-
driven models, variation of model parameters to generate diverse instances, and appro-
priate statistical tools for the analysis of results based on mixed models [62].
Similarly to these approaches, Flasch [90] suggest to use Kriging models as test func-
tions for symbolic regression with genetic programming. To derive a more varied set
of functions from the Kriging model, its parameters are changed in a controlled but
randomized way. For instance, the kernel parameters of the Kriging model may be
slightly enlarged or decreased. The predictor of the altered model is the desired test
function. We denote this as parameter-variation.
Fischbach et al. [88] extend the parameter-variation approach to deal with two prob-
lems. Firstly, data driven model may not be sufficiently sensitive to changes of the
model parameters. This yields test functions that are too similar, and violate our re-
quirement for diversity (C.2). Secondly, the converse may be true. That is, small
changes of the parameters yield large changes in the behavior of the model. The re-
sulting test functions may not have any similarity with the original real-world problem.
Fischbach et al. [88] suggest computing some measure of similarity between the test
functions and the original problem. If the computed values violate a lower or upper
bound specified by the user, the test functions are disregarded.
A recent observational approach by Dang et al. [72] also concerns algorithm tuning.
They propose to use surrogate benchmarks based on random forest models. To ver-
ify that their models respect the actual problem behavior, they consider the accuracy,
homogeneity, and variable importance of the resulting models.
In this thesis, we propose an observational approach, based on Kriging. Unlike ear-
lier works, our generator uses simulation rather than estimation of Kriging models.
This has two advantages. Firstly, simulation may produce diverse test functions in a
principled way (C.2). Secondly, it may avoid the pitfall of smoothing (C.6).

9.3.3 Simulation-based Test Function Generator

Kriging Simulation A detailed description of Kriging was already given in Sec-
tion 2.3. The corresponding predictor given in Section 2.3.2 is an estimator of a func-
tion value of a new sample x. In this context, estimation and simulation have quite
different goals. Estimation aims to produce a value that is as close to the true value as
possible. In contrast, simulation should produce a set of values whose moments are as
close to the moments of the true data as possible [142].
Hence, the simulation of a Kriging model produces realizations of a Gaussian process.
The mean and covariances of these realizations depend on the model configuration and
the training data. Surprisingly, the predictor is derived from the same model and data
but is not guaranteed to have the corresponding mean and covariances [69]. Since the
goal is to make a good, isolated guess, estimation produces a smoothed landscape.
While high frequency changes could be ignored by an estimator, the simulation is able
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to reflect them [69].
Approaches for simulation of Kriging models are, e.g., decomposition approaches, the
spectral method, or the turning bands method [69]. Since it is simple to compute and
straightforward to implement, we use an approach that is based on the computation of
the square root of the covariance matrix [69]. To produce the simulation, we first need
to specify a set of nsim simulation samples Xs ⊆ X . Then, the correlation matrix Ks

for this data set is computed. The matrix is decomposed with

σ2Ks = Cs = UΛUT,

where Cs is the covariance matrix with its corresponding eigen-decomposition into
eigenvectors U and diagonal eigenvalue matrix Λ = diag(λ). The square root of Cs is

Cs
1/2 = Udiag(λ

1/2
1 , ..., λ1/2nsim

)UT.

It is used for the simulation with

ŷs = 1µ̂+ Cs
1/2ε. (9.9)

Here, ŷs are the unconditional simulated values for the samples Xs, and ε is a vector
of independent random samples with εi ∼ N(0, 1) and i = 1, ..., nsim.

Kriging Conditional Simulation While the unconditional simulation reproduces
the moments of the training data, it does not reproduce the training data itself. To
mend this, the simulation can be conditioned with the training data. This ensures that
the simulation reproduces the training data exactly, i.e., ŷs = ŷ if Xs = X . The
resulting conditional simulation is closer to the estimation, but still has twice its er-
ror [142, 69].
Lantuejoul [156] gives a plausible example to demonstrate that the conditional sim-
ulation is useful despite its larger error. Figure 9.17 depicts depth measurements for
an undersea cable. A Kriging model is built with the depicted data points and used to
estimate the true depth. Furthermore, a conditional simulation is performed.
Whether either of them should be used depends on the purpose of the analysis: If the
goal is to have a good idea of the true depth at a specific location, e.g., because a
diver has to check the cable at that location, then the estimation is preferable. But if
the length of the cable needs to be estimated before production starts, the estimation
would grossly underestimate its length (due to smoothing). The conditional simulation
would be a better basis for that purpose. It needs to be stressed that the depicted
estimations and simulations are different aspects produced by the same instance of a
Kriging model.
While approaches that are more efficient are possible, we decided for a straightforward
conditional simulation approach [240]. We need three correlation matrices: The cor-
relations of the training data K, the simulation samples Ks, and the cross-correlations
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Figure 9.17: Undersea cable depth estimation (black line), conditional simulation (dashed
red line), and the given data (black dots). Based on the example presented in [156]. Slightly
modified from [268].

between simulation samples and training data Kx. Then, the correlation matrix re-
quired for the conditional simulation is [240]

Kcs = Ks −KxK
−1Kx

T.

Similarly to Eq. (9.9), Ccs = σ2Kcs is used to produce the conditional simulation

ŷcs = ŷ + Ccs
1/2ε. (9.10)

The vector ŷ results from the predictor in Eq. (2.4).
It can be easily checked that this simulation is conditioned by the training data. If
training and simulation samples are identical, then Ks = Kx = K. Hence, Kcs = 0
and Eq. (9.10) results into ŷcs = ŷ.

Test Function Generator We describe the proposed test function generator based
on non-conditional or conditional simulation of Kriging models in Algorithm 6.
We distinguish two cases. Either, an existing data set is used, or some experimental
design procedure is used to generate samples in the search space that are evaluated
with the expensive objective function (Line 2 - Line 7). In practice, a mix of both is
possible, e.g., when a rather small existing data set is augmented by additional obser-
vations. The data is used to train a Kriging model (Line 8). Afterwards, the simulation
samples are created (Line 9), which are the samples at which the model is simulated.
For each of the ntest test functions that are created, a separate simulation is performed
(Line 11), e.g., by specifying different random number generator seeds. If a simulation
covers the whole search space, then the resulting simulated values are the test function.
Clearly, this may only occur if the space is discrete and sufficiently small. If the search
space is not covered completely, then we require an additional step that interpolates
between the simulation samples (Line 15 in Algorithm 6). To guarantee that the inter-
polation step actually reproduces the training data in the conditional simulation case, it



152 9.3. SIMULATION FOR TEST FUNCTION GENERATION

Algorithm 6 Simulation-based test function generation, as proposed in [268].
1: Given: number of training samples n, simulation samples nsim (usually nsim � n),

the number of required test functions ntest, and (optionally) the expensive real-
world objective function f(x).

2: if f(x) is available then
3: Create n samples X = {x(1), . . . , x(n)}; . Training samples
4: yi = f(x(i)) ∀ i ∈ {1, ..., n}; . Expensive training observations
5: else
6: User provides data set {X,y};
7: end if
8: M = model (X,y); . Train Gaussian process model
9: Create nsim samples Xs = {x(1), . . . , x(nsim)}; . Simulation samples

10: for j = 1 to ntest do
11: Create (un)conditional simulations ŷ(j)

s with Eq. (9.9) or Eq. (9.10);
12: if Xs = X then . Simulation covers the whole search space
13: Simulation ŷ(j)

s is the required j-th test function;
14: else
15: Provide j-th test function as interpolation of simulated samples using

Eq. (2.4): ŷ(j)s (x) = µ̂+ ks
TKs

−1(ŷ(j)
s − 1µ̂);

16: end if
17: end for

is useful to ensure that X ⊂ Xs. The interpolation step has to be used with care. It es-
sentially relies on estimation and may violate the ruggedness criterion (C.6). However,
the simulation interpolates nsim samples, which should be more numerous than the n
training samples. Therefore, the smoothing problem should usually be less severe for
simulation, compared to pure estimation.
With respect to our criteria, we can summarize the following advantages.

(C.1) Difficulty: Since the simulations are based on real-world data, sufficient diffi-
culty of the function should be given. By avoiding smoothing, the simulations
avoid the creation of test functions that are too simple.

(C.2) Diversity: The simulations are random realizations of Gaussian processes. An
infinite number of realizations can be sampled at random. Sets of such test
functions are naturally diverse, yet reproduce the features of the real-world
data. Compared to the parameter variation approach (see Section 9.3.2), this
is a more principled way of generating diverse functions. We are not relying
on user specified bounds on some measure of similarity between problem in-
stances. A simulation-based test function is guaranteed to reflect the properties
of the learned Gaussian process model. In contrast, some arbitrary change to
model parameters would not yield that guarantee
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(C.3) Flexibility: The desired flexibility is inherent to Gaussian process models. By
adapting the kernel functions or other aspects of the model, quite different data
sets can be represented.

(C.4) Relevance: Due to being based on real-world data, and due the prevention of
smoothing, the resulting test functions should reflect the behavior of the real-
world optimization problem. In fact, both the behavior (non-conditional) and
data itself (conditional) may be reproduced by the simulation test functions.
This is in contrast to other Kriging-based test function generators such as the
Krigifier, which was not intended to use real-world data.

(C.5) Cost: Since the underlying model can be trained with a static data set, further
evaluations of a potentially expensive objective function are not required.

(C.6) Ruggedness: Avoiding some form of smoothing by the model is one core reason
to rely on simulation rather than estimation.

Correspondingly, the following potential drawbacks have to be considered.

(C.1) Difficulty: It is hard to interpret the difficulty and behavior of simulation-based
test functions. In particular, the number, value, and location of the optima are
unknown. If required, such features have to be approximated. This is in contrast
to many classical test function generators, such as BBOB, where these features
are usually known.

(C.2) Diversity: Conditional simulations may produce test functions that have little
diversity if the trained Kriging model fits the data very well. The model es-
timates low variances, and all realizations of the simulation are nearly identi-
cal (Fig. 9.18 shows an example). This could occur if the modeled problem is
extremely simple (e.g., linear) or if the training data set is fairly large. To de-
tect such a case, the estimated uncertainties at the simulation sample locations
Xs can be compared against a threshold value. In many use-cases, sparsity of
training data due to high costs of evaluation would render this issue unlikely.
Furthermore, unconditional simulation is not affected by this issue.

(C.3) Flexibility: The flexibility of Kriging has an inherent drawback. Increasing the
number of model parameters leads to a more flexible model, but it also increases
the complexity of the MLE-based training procedure.

(C.4) Relevance: The training data may introduce bias. If insufficient data is col-
lected, the model may not learn the problem structure. This necessarily affects
all observational, data-driven test function generators.

(C.5) Cost: The evaluation cost is in general a strong point of test functions based on
surrogate models. Still, if the number of training samples n and/or the number
of simulation samples nsim become very large, the computational effort and/or
memory requirement may grow too large.
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(C.6) Ruggedness: It is important and difficult to specify a good value for the number
of simulation samples nsim. While large values may be costly (see C.5 above),
rather small values of nsim may lead to excessive smoothness, due to the addi-
tional interpolation step. Fortunately, this smoothness issue is less severe than in
the estimation case. The number of training samples n is restricted by the cost of
evaluation of the expensive, real-world objective function f(x). The parameter
nsim is not restricted by this cost.

In addition, the model selection and configuration may introduce bias. Competing
SMBO algorithms that employ different models may not be reasonably compared on
simulation-based test functions, especially if only one of them uses Kriging. It is likely
that the SMBO algorithm with the Kriging model would receive an unfair advantage.

9.3.4 Illustrative Examples

We demonstrate the implications of our test function generator with a simple and intu-
itive example. Despite the focus of this thesis, we decided against a discrete test case,
mostly because continuous examples can be easily visualized. Hence, we chose the
simple, real-valued, one-dimensional function

fexample1(x) = exp(−20x) + sin(6x2) + x, (9.11)

with x ∈ [0, 1]. Our goal was to show how estimation, simulation, and the underlying
ground truth fexample1(x) interact.
Hence, a Kriging model was trained with n = 6 uniform random samples evaluated
with fexample1. A second Kriging model was trained with n = 11 equidistant samples,
to illustrate the effect of a better model fit. Both were simulated with nsim = 100
simulation samples. In each case, twenty potential test functions were generated, ten
each with unconditional and conditional simulation, as shown in Figure 9.18.
Of course, the training data was not reproduced by the unconditional simulations. Only
their behavior was similar to the original function. Besides random differences, no
clear distinction between the two models (n = 6, n = 11) was observed for the uncon-
ditional simulations.
The conditional simulations had a quite different behavior. As expected, they repro-
duced the training data. The larger the distance to some training observation became,
the more deviation occurred between the simulations and the original function. This
behavior is linked to increased uncertainty estimates (cf. Section 2.3.3). For the
equidistant samples, the improved model quality led to conditional simulations that
were nearly identical. In lights of these observations, it should be clear that if a di-
verse set of problems from the same class are of interest, unconditional simulation is a
better choice. Conditional simulations are better if the behavior of a specific problem
instance is of interest.
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Figure 9.18: Top: The function fexample1(x) (dashed, black) and the Kriging estimation (solid,
black) based on training data (dots). Middle: 10 realizations of a conditional simulation.
Bottom: 10 realizations of an un-conditional simulation. Left: trained with six uniform random
samples. Right: eleven equidistant samples.

To explain the importance of the number of samples (n and nsim), Fig. 9.19 shows a
similar example. Here, we chose the function

fexample2(x) = x+
10∑
i=1

sin(72(c1i + 0.5)(x− c2i)), (9.12)

with cji representing uniform random samples from the interval [0, 1]. This function is
clearly quite nonlinear and hence more difficult to model than fexample1(x).

An insufficient number of training samples n = 5 clearly led to a poor model. Cor-
respondingly, both estimation and simulation instances were much smoother than the
objective function. However, with an increasing number of training samples, both
improved. Similarly, the simulations strongly depended on nsim. In particular, the sim-
ulations with nsim = 2 were excessively smooth. It can be concluded, that both the
training data set size n and the number of simulation samples nsim need to be suffi-
ciently large to produce a representative test function based on simulation.
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Figure 9.19: Estimation and unconditional simulation instances of a Kriging model for
fexample2(x) (solid black lines). Each segment depicts a different number of training samples n
and simulation samples nsim. The dashed line is the true function fexample2(x). Black dots are
training samples.

9.3.5 Protein Landscape Application

Data and Problem This section presents a real-world application of the simulation-
based test function generator. To that end, we chose an openly available data set from
the field of computational biology [214, 37]. The data set contains the fitness values of
all DNA sequences of length ten. Here, fitness refers to the affinity to a fluorescent tar-
get protein: allophycocyanin. The data set has previously been used for the assessment
of evolutionary algorithms, using a finite state machine model [215].
Candidate solutions x are DNA sequences with m = 10 bases, i.e., strings with ten
letters that are either A, C, T, or G. The fitness faffinity(x) is the result of the complex
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measurements described by Rowe et al. [214], and is part of the data set. It has to be
maximized.

Test Function Generation We tested different configurations of the model and the
training data.

• We generated two individual training data sets. The first was selected from the
complete space (train-complete). The second was selected from a subspace of
1024 sequences (train-subspace). For the subspace, the last 5 elements of each
sequence were arbitrarily fixed to ACGTA. In both cases, n = 100 sequences x
and their fitness y = f(x) were selected (randomly, uniformly) to emulate an
expensive objective function.

• Two models were trained with the corresponding data, a Kriging model, and a
random forest model. For Kriging, we chose an exponential kernel k(x, x′) =
exp(−θd(x, x′)) based on the Hamming distance. The Hamming distance also
proved to yield good results in other studies [271] and has the additional advan-
tage of low computational costs. The Hamming distance was also used in the
original study that introduced the underlying data set [214]. For the random for-
est regression model, we decided to use the randomForest package in R with
default settings. We denote Kriging with KR and random forest with RF.

• We analyzed the derived test functions in the complete space (test-complete) and
the subspace (test-subspace).

• For the KR model, we investigated three different types of test functions. Firstly,
a single instance was created with the predictor (estimate). Secondly, ntest = 10
test functions were created by unconditional simulation. Since the complete data
set is available, there was little motivation for conditional simulation. The idea
was to create test functions that show similar behavior as the real protein fit-
ness landscape. For the subspace, all nsim = 1024 sequences were simulated
(simulate-all). For the complete space, simulating all 410 sequences was compu-
tationally infeasible. Hence, nsim = 1000 sequences were simulated, and the test
function was generated via the interpolation step (simulate-interpolate).

All resulting test instances are summarized in Table 9.2.
Due to the discrete, small search space, brute force was used to estimate the global
optimum of each generated test function landscape. The number of local optima was
also determined by brute force, i.e., the number of sequences with neighbors of equal
or worse fitness. Here, Hamming neighborhood was employed. That means, the neigh-
bors of a sequence were defined as all sequences that differed in exactly one element
from the original sequence.
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Table 9.2: Test function instances based on protein-data.

ID search space model test function generation # of instances

0 real-world data 1
1 complete KR simulate-interpolate 10
2 complete KR estimate 1
3 complete RF estimate 1
7 subspace KR simulate-all 10
8 subspace KR estimate 1
9 subspace RF estimate 1

Landscape Analysis: Complete Space To understand the behavior of the derived
test functions, we first report landscape characteristics of the test functions based on
simulations in the complete, unrestricted search space. Rowe et al. [214] report a cor-
relation length of roughly 4.5 for the whole search space. They estimated this value by
calculating the auto-correlation of random walks in the fitness landscape. Their result
was nicely reproduced by our KR model, which was trained with just 100 samples:
The correlation length (the reciprocal of the kernel parameter θ) determined by maxi-
mum likelihood estimation during model training was 4.48. Another good match was
the reported fitness distance correlation, which was −0.32 for the original data. We
estimated a mean of −0.37 and a standard deviation 0.09 for the ten simulations.
Unfortunately, we also observed a strong mismatch between the simulation-based test
functions and the original fitness landscape. Rowe et al. [214] report that the data set
has 6805 local optima. The simulations only produced between 5 and 50 local optima.
Hence, the simulation-based test functions seemed to be a poor representation of the
underlying optimization problem. This problem was clearly linked to the last step of
the test function generator: interpolation. Essentially, the interpolation step smoothed
through local optima that would have been present in a pure simulation of the complete
search space. Since the number of simulated samples nsim = 1000 was much smaller
than the number of local optima in the real landscape, the resulting test functions were
necessarily much easier than the real problem.
As expected, the same problem occurred for the estimation-based test functions. The
KR estimation was even worse with just 4 local optima. The estimation of the RF
model was slightly better with 32 local optima.

Landscape Analysis: Subspace We avoided the interpolation step by restricting the
modeling and the analysis to a subspace of just 1024 DNA sequences. Then, estimation
with KR or RF yielded 2 local optima. The KR simulation produced 10 to 19 local
optima. The real landscape has exactly 16 local optima in the subspace. Without the
interpolation step, the earlier violated criteria (C.1, C.4, C.6) seemed to be satisfied for
the simulations in the subspace.
In theory, we could repeat the same simulation experiment (without interpolation) with
the complete search space, but that is computationally infeasible: Even just storing
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the required 410 x 410 covariance matrix is prohibitive. A more efficient simulation
technique would be required.

Performance Analysis In additional experiments, we used the simulation-based test
functions to evaluate the performance of optimization algorithms. We restricted the
optimization performance tests to the five-base subspace to avoid problems with the
interpolation step. Ten different simulation-based test functions were created, and each
algorithm was run twenty times on each function, resulting into 200 replications.
In addition, we generated a single estimation-based test function with KR and another
one with RF. To provide a ground-truth, the tests were also repeated on the actual
objective function, i.e., directly using the real-world data. Since these cases (KR esti-
mation, RF estimation, real-world data) only involved a single test function instance in
each case, all 200 replications were spent on that single instance.
We tested a variant of CEGO as described in Algorithm 4, with the following settings.

• initialization: ninit uniform random samples, with ninit ∈ {5, 10, 20, 50}.

• model: KR with Hamming distance.

• optimizer: Due to the small search space, the infill criterion was optimized by
brute force.

• infill criterion: Either expected improvement (EI) or the predicted mean of the
model (Mean).

• termination: The algorithm terminated after 100 objective function evaluations.

Random search was used as a baseline comparison to the model-based approaches.
Hence, we compared 9 algorithms: random search and eight CEGO variants. Each
CEGO variant corresponded to different configurations of the infill criterion (EI, or
Mean) and ninit ∈ {5, 10, 20, 50}.
To estimate and compare performance over time, we used a set of target values and
recorded the respective runtime required to reach these targets. Here, runtime implies
the number of objective function evaluations. The global optimum yopt = f(xopt) of
each test function was determined by brute force. Based on the determined optimum,
the fitness gap was defined as follows fgap(x) = f(x)−yopt. Evenly spaced targets for
the fitness gap were specified on a logarithmic scale: tarfgap = 100, 10−0.2, . . . , 10−6.
During each algorithm run, we recorded the runtime when a target was attained. We
aggregated the resulting data by calculating the fraction of all targets reached at a
certain runtime. The resulting curves (fraction of targets reached against runtime) are
also called run length distributions [124], empirical cumulative distribution functions
(ECDF) [112] or data profiles [184].
The results from our experiments are depicted in Fig. 9.20. The figure indicates that
using the EI infill criterion was crucial for good performance of CEGO. The Mean
infill criterion produced performance close to the random search baseline. Results at
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(b) Kriging estimation
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Figure 9.20: Logarithmic ECDF plots for comparing optimization algorithms in four test
cases. The labels inside the plots indicate the configuration of the employed algorithm, that
is, whether EI or the predicted mean were used as an infill criterion and the size of the initial
design. The x-axis depicts the logarithm of the number of fitness function evaluations (feval).
Lines end when no further improvement is recorded.

exactly 100 evaluations were mostly insensitive to the initial design size ninit. Earlier
in the runs, smaller ninit yielded superior results.
The strong positive effect of EI could be attributed to the ruggedness of the problem and
the large number of local optima. The explorative properties of the EI infill criterion
seem to have helped to deal with these difficulties.
Furthermore, the runs with the Mean criterion were more distinct from the random
search baseline in case of estimation. This is no surprise, because these functions were
clearly smoother than the simulations and the real objective function. Essentially, the
performance of all algorithms was overestimated by the estimation-based test func-
tions. In contrast, the simulation-based runs were much closer to the results on the true
objective function.
This stresses that simulation approaches are more suited to satisfy the required criteria
of test function generators, especially with regard to difficulty (C.1), relevance (C.4),
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and ruggedness (C.6). This result was independent of the chosen model. RF and KR
estimation both produced similar test results. Both seemed to capture similar behavior
from the training data. There were only small differences; Algorithm runs on the RF
instances seemed to converge slightly faster.
While the simulation-based test functions were close to reproducing the real-world
problem, small differences remained. The goal of the simulation-based test functions
was not to produce exact surrogate functions for the true, real-world problem. Rather,
it was desired to create test function instances with similar behavior. Still, the selected
kernel of the KR model may be further improved, to generate simulations that are
more accurate. For instance, the isotropic nature of the kernel may not have been a
perfect choice. Rowe et al. [214] report that bases at the start of a sequence have larger
impacts than the bases later in the sequence. Hence, it would be promising to use an
anisotropic kernel, which allows learning the importance of each base. This additional
accuracy could produce better results but would also increase the computational cost
of the model.

9.3.6 Summary

The core question of Section 9.3 is answered as follows.

Answer 9.4. Generating test functions. How can we generate test functions that
fulfill requirements such as difficulty and real-world relevance?

We proposed to use Kriging simulation to this end. Kriging simulation can generate
test functions that emulate the behavior of real-world optimization problems. The
simulation-based approach is able to produce difficult (C.1), diverse (C.2), flexible
(C.3), relevant (C.4), and inexpensive (C.5) test problems that may avoid harmful
smoothing (C.6).

Simple examples were used to illustrate the idea. A protein sequence data set was
employed to demonstrate the implications of a complex real-world problem. This
demonstration showed that, while not without hazards, simulation does present a clear
advantage over estimation-based approaches. The simulation-based test functions can
reflect the behavior of the real-world problem rather than just the data itself.
We strongly recommend using a simulation approach if data-driven test functions are
desired. Simulation is a principled way of generating diversity and avoiding unde-
sirable smoothness. Still, simulation-based test functions are not supposed to replace
classical test function sets. These test function sets do have merits, e.g., their properties
and behavior are well understood. If an algorithm were assessed without any specific
application in mind, a mix of both would be ideal. If an algorithm were assessed with
the desire to determine performance on problems with specific features (e.g., separa-
bility, unimodality), classical test functions would probably be preferable. Contrarily,
if an algorithm is assessed in the context of a specific real-world application (i.e., C.4
is important), a simulation-based test function generator should be preferred.



162 9.4. CONCLUSIONS

In the latter case, if performance on a class of problems with similar behavior as the
real objective function is of interest, unconditional simulation would be more appro-
priate. Conditional simulation would be more appropriate if the performance of an
algorithm for a specific problem is of interest.
Future research should focus on the main problem of the simulation-based function
generator: dealing with large rugged search spaces. These remain a challenge because
they require many simulation samples, which leads to intractable computational re-
quirements. Especially for discrete search spaces, Gaussian Markov Random Field
models [219] may be a promising solution. Here, the Markov property induces spar-
sity in the inverse of the covariance matrix, which may be exploited to deal with large
sample sizes.
Furthermore, a method for determining the required number of simulation samples nsim

is desirable. As the examples in Section 9.3.4 showed, a small nsim provides satisfying
results if the problem itself is rather smooth. Clearly, the smoothness of the model is
specified once the kernel parameters are determined. It should be possible to estimate
the required nsim from the covariance structure of the model.
Finally, simulation is not limited to Gaussian processes. It may be beneficial to include
different stochastic process model types into the analysis, especially, to reduce the
potential bias introduced by a specific model choice.

9.4 Conclusions
The preceding sections show that SMBO methods like CEGO are not limited to vector-
valued, discrete search spaces, such as strings or permutations. While it is a challenge
to define adequate distances for graph structures, such as trees, the resulting kernels en-
able to learn the mapping from complex representations to a fitness value. Especially
for trees, phenotypic distances seem to be a very promising idea. Once such a pheno-
typic distance is defined, a modeling algorithm may become completely independent
of the underlying solution representation.
The results on hierarchical search spaces point in a slightly different direction. Here,
the idea is not to derive some similarity based on the phenotype. Rather, the genotype
distance is reinforced with expert knowledge about the modeled variables. While this
is a less generalizable approach, the resulting kernels seemed to perform extremely
well.
These examples form interesting and challenging test cases for our methods. Still,
SMBO algorithms require broader, real-world relevant benchmarks. Our proposed
simulation-based test function generator may provide such benchmarks. We suggest
that more data sets and examples should be made available to the research community,
leading to relevant, easily reproducible test problems.
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Part III

Closure
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Chapter 10

Final Evaluation and Outlook

A particular challenge in the development of SMBO algorithms is their interdisci-
plinary nature. They combine methods from different fields, including statistics, ma-
chine learning, evolutionary computation, and classical optimization. Hence, it is no
surprise that this thesis touched on aspects from all of these areas. This chapter at-
tempts to consolidate all aspects that have been discussed in this thesis, giving a retro-
spect of the various lines of research.
Just like a good riddle, research is often a reward in itself rather than just a means
to an end. Still, we would be glad if this work provided some interesting solutions
to practitioners as well as some starting points for future research. To that end, this
chapter will contain advice to practitioners as well as an outline of potential future
research.

10.1 Summary

The core motivation of this thesis was to extend SMBO to combinatorial and discrete
optimization problems. As a foundation, we first outlined the core concepts of EAs,
SMBO, Kriging, and EGO in Chapter 2. These were four of the main ingredients in-
volved in this thesis. In providing these foundations, we necessarily took a perspective
from the field of continuous optimization. This is where most of these ideas originated.
To extend on these origins, Chapter 3 dealt with the more recent developments in the
context of discrete or combinatorial problems. Here, we classified discrete surrogate
modeling approaches into six strategies. We identified feature extraction, mapping,
and kernel-based models as the most promising strategies, due to their applicability to
a wide range of problems. Among them, kernel-based models stand out, because they
are the basis of models like Kriging.
Kernels are in fact a widely discussed topic, involved in numerous methods from the
field of statistics and machine learning. For the sake of clarity, and to lay some fur-
ther foundation for later chapters, we provided some terminology and definitions in
Chapter 4.
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With the foundations given, Chapter 5 investigated the extension of Kriging-based op-
timization via EGO to combinatorial, discrete, or mixed optimization problems. Here,
the intuitive idea was to replace the continuous kernels in the models with more ap-
propriate kernels for discrete spaces. At a first glimpse, this straightforward approach
could have settled the problem. However, it turned out that things are not that simple.
Importantly, the phrase appropriate kernel is rather vague. It immediately led us to two
questions. Firstly, are our kernels missing some crucial properties? Secondly, what do
we do if several kernels are available?
With regard to the latter question, this thesis showed repeatedly that we rarely consider
only a single kernel. Rather, there is usually a set of potential kernels available. Hence,
it is of paramount importance to select kernels, or to combine them in some way. To
that end, this thesis discussed various methods in Chapter 6, based on concepts related
to correlation, likelihood, and cross-validation. Links to the literature on multi-kernel
methods were provided. We observed in an experimental study that it was indeed
beneficial to consider multiple kernels rather than sticking to a single one.
Another key aspect of kernels is their definiteness. Kernels are often desired to be PSD
(e.g., correlation functions) or CNSD (distances). It may require some time and effort
to determine whether a kernel or distance is definite. In some cases, this is possible,
e.g., in case of the kernels proposed in Section 9.2. Unfortunately, not all kernels
have such a simple structure. Thus, we suggested an empirical approach in Chapter 7.
Essentially, a search procedure (directed or random) can be used to find cases where
a kernel yields an indefinite matrix, thus proving that the kernel is indefinite. In this
context, several distances for permutations were shown to be non-CNSD.
However, what is gained by this? Firstly, if no indefinite cases are discovered, we
can simply assume that the kernel is definite and resume with standard kernel-based
modeling approaches. This was the case for the majority of the investigated measures
of distance for permutations.
For those kernels that were shown to be indefinite, we proceeded to consider methods
that are able to produce a model despite the indefiniteness of the underlying kernel.
This was discussed in Chapter 8. We borrowed various methods from the field of sup-
port vector machines, explained how they are applied to Kriging, proposed additional
correction and repair methods, and discussed how this relates to non-stationary models.
An experimental investigation showed that approaches based on spectrum transforma-
tions might improve Kriging models with indefinite kernels. However, choosing the
right transformation and repair method remains difficult.
To summarize the steps so far, this thesis i) showed how kernels on discrete objects
enable combinatorial optimization with Kriging models, ii) investigated how different
kernels can be selected or combined, iii) proposed methods to determine whether in-
dividual kernels are definite, and iv) explained how Kriging models may incorporate
indefinite kernels.
To stress the relevance of these deliberations, we considered more complex search
spaces in Chapter 9. In particular, we investigated symbolic regression problems and
proposed several new kernels for hierarchical search spaces. To enable benchmarks
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with more real-world relevance in the future, we also proposed a simulation-based
test function generator. In contrast to other data-driven test function generators, a
simulation allows for a principled way to generate diverse test instances. In addition,
simulations may avoid producing test instances that are too smooth. We illustrated the
implications of this generator with a real-world data set.
This concludes the scientific contributions. As a final note, we would like to mention
that most methods discussed in the experimental part of this thesis are available in the
open source software package CEGO [263]. The CEGO package is developed for the
statistical computing language R. It includes models, optimization algorithms, kernels,
distances, and several other tools required to implement or use the methods discussed
in this thesis.

10.2 Advice for Practitioners
Kernel and Model Selection In Chapter 6, we have dealt with various options for
dealing with multiple kernels. Based on the experimental results, one conclusion seems
obvious: While it may be hard to select the best multi-kernel method it seems to be
important to use any multi-kernel method rather than just a single kernel.
However, multi-kernel methods are no magic bullets that automatically always produce
the best model. They necessarily have to pay for their greater flexibility with a lowered
accuracy on some specific problems. This follows from the fact that they first have to
learn which kernel or kernel-combination works for a specific application. Necessar-
ily, their efficiency deteriorates with an increasing number of individual kernels. The
probability of favoring a sub-optimal kernel increases.
Hence, a further suggestion is that a-priori knowledge should be taken into account
when possible. Any available knowledge about the problem to be solved should be
used to reduce the number of kernels to decide on. If a single good kernel is deemed
adequate for a certain problem (based on some expert knowledge or problem under-
standing), it makes little sense to invest additional effort into inventing other kernels,
only to justify the use of some multi-kernel method. Similarly, if it is clear that some
kernel is a poor choice for a problem, it makes no sense to include it in the model.
Multi-kernel methods should be used when there is considerable uncertainty about
which kernels work well.

Constructing New Kernels In the contrary to the multi-kernel considerations above,
there may be practical problems where no good kernels are readily available. Then, a
new kernel may have to be designed. In that case, how can new kernels be devised?
The first, obvious suggestion is to check the literature. While this may not always yield
a ready-made solution, finding kernels for similar problems may be helpful: They may
provide hints on a kernel’s design. We used this approach successfully to develop a
new, definite kernel for hierarchical search spaces (cf. Section 9.2).
It may also be helpful to check whether the literature describes evolutionary variation
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operators for these cases. Kernels and variation operators encode very similar infor-
mation; both consider some sort of neighborhood in the corresponding search space.
This is, e.g., obvious for edit distances, since the corresponding edit operations are
often used as variation operators. The close relationship between variation operators
and kernels is also discussed by Lane et al. [155].
Another idea may be to follow the idea of convolution kernels [116]. It may be simpler
to design kernels on parts of an actual candidate solution. These individual parts may
then be combined in an overall kernel. Similarly, new kernels may also be generated
in an automated way by employing genetic programming [95, 150].
If an idea for a kernel does not present itself, it may help to think of the problem in
the context of the modeling strategies from Chapter 3. It may be easier to think of a
mapping function, rather than a similarity function (kernel). Or else, an application
expert may be able to derive meaningful features, and use those as the basis of the
kernel or model.
Given the fact that indefinite kernels may be used successfully in various surrogate
models (cf. Chapter 8), it may be questioned whether effort be spent on designing def-
inite kernels. Alternatively, should a potentially more simple, yet indefinite kernel be
preferred? The answer depends on the situation. If there already is a good idea of how
to design a definite kernel, this should clearly be used, to avoid the additional complex-
ities of modeling with indefinite kernels. Furthermore, it may be useful to consider the
goal of the planned experiments. If a general solution approach is required, designing
a definite kernel may be profitable. If only a solution to a specific problem is desired,
an indefinite kernel may be perfectly fine.

Dealing with Indefinite Kernels One by-product of our investigations is that indef-
inite kernels are a very relevant challenge. Chapter 7 showed not only how we could
use an empirical approach to investigate the definiteness of a kernel. Moreover, sev-
eral of the tested distances turned out to be indefinite. In addition, all kernels used
in the experiments with symbolic regression trees (Section 9.1) were discovered to be
indefinite. In this latter case, the detrimental effect of this lack of definiteness became
obvious during the analysis of the experimental results.
However, there are ways to compensate for a lack of definiteness. Chapter 8 discussed
spectrum transformation that may be used to correct indefinite kernels. Here, the diffi-
culty is to find the right configuration. In practice, we suggest making some initial tests
with artificial test function. Such preliminary experiments may be a reasonable basis to
decide on the right correction method, without spending any resources on evaluations
with the expensive, real-world objective function.
If the more complex methods based on spectrum transformations are disregarded for
some reason, there may be more simple alternatives. While results may not be optimal,
a simple correction via the nugget effect at least provides a feasible model. The results
from Section 9.1 also suggest that a combination of several kernels may render a model
more robust against issues with definiteness.
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10.3 Future Work
As demonstrated in this thesis, combinatorial or mixed data structures are not an im-
passable hurdle to SMBO methods. Yet, some obstacles remain to be eliminated. We
limit this final section to issues that are closely connected to this thesis. For a wider
view on open issues in this field, we refer to recent surveys [232, 26, 63].

Dimensionality Kriging is often reported to perform poorly for high-dimensional,
real-valued search spaces. There is no strict upper bound, yet m > 20 has been used
as an approximate threshold, e.g., by Forrester et al. [93]. The behavior of learning
algorithms for high-dimensional data has also been linked to the underlying distance
functions by Aggarwal et al. [2]. However, it is unclear how this applies to discrete,
combinatorial search spaces with arbitrary distances or kernels. What distances and
dimensionalities are problematic?
Moreover, what can we do to counteract these problems? Existing methods like feature
selection are not necessarily applicable to complex data types, such as graphs. These
questions definitely require further investigation. At the same time, recent results for
high-dimensional permutation problems investigated by Smith et al. [235] seem to be
quite encouraging.

Indefinite Kriging While Chapter 8 outlined different approaches for Kriging with
indefinite kernels, it is still unclear what specific configuration should be chosen in
practice. It may be difficult to decide what type of spectrum transformation is rea-
sonable, or which repair procedure should be used. The large number of potential
configurations presents an optimization problem in itself.
Of course, preliminary tuning experiments may be a reasonable solution. Yet, this may
not always be feasible due to the computational costs. A more formal approach could
lend a theoretical foundation to the discussed methods.

Visualization A common issue that we encountered throughout this thesis is visual-
ization. Often, visual cues are an important catalyst for a more formal analysis. They
can help to facilitate an intuitive understanding of problems and algorithms. This was
the main reason why we often resorted to simple, continuous examples, e.g., in Sec-
tions 8.3 and 9.3.4.
Visualization methods for combinatorial problems would hence be extremely interest-
ing for researchers as well as practitioners. As a starting point, there already exist a
few approaches for the visualization of combinatorial problem landscapes, such as bar-
rier trees [89, 28]. It would be interesting to integrate information like the uncertainty
estimate of a Kriging model into such visualizations.

Benchmarks and Test Functions The simulation-based test function generator de-
scribed in Section 9.3 was noted to have two tightly connected problems. Firstly, we
still need a reliable estimate of the required number of simulation samples nsim. This
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is critical to the quality of the generated test instances. Secondly, if the value of nsim is
large, we require efficient Kriging simulation techniques.
More generally, it would be desirable to have actual real-world problems available. At
the very least, the release of data sets from expensive, discrete, real-world optimiza-
tion problems would allow using these data sets as a basis for simulation-based test
functions.

Model Comparisons Comparing a varied set of models in a broad experimental
study may be of major interest to practitioners. At the same time, this would pro-
vide important insights for algorithm developers. Besides Kriging, future comparisons
may include models like Random Forest, or graph models, such as Markov random
fields. Of course, these comparisons strongly depend on a meaningful set of test func-
tions. The development of a good benchmark framework is a major precondition for
these comparisons.
It would be especially interesting to investigate problems from the field of chemical
design. Here, autoencoders have seen some attention in recent years [185, 104, 108].
It is a compelling question, whether models and kernels should operate in the coded
space, or whether they should directly operate in the chemical design space.

To summarize, we would like to highlight the three most pressing open issues. Firstly,
from the methodological perspective, we need a better understanding of indefinite ker-
nels and their correction in Kriging models. Secondly, from the experimental perspec-
tive, better test function generators are needed to be able to evaluate any methodolog-
ical developments in the field. Finally, from the real-world perspective, we need to
experiment with actual applications, to evaluate the relevance of test functions, as well
as the quality of the developed methods. From the crowd of open issues, these strongly
interrelated challenges should be a major focus of future research.
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Appendix A

Analysis Tools

Experiments are central to the design and understanding of modeling and optimiza-
tion algorithms. Not all aspects of an algorithm can be evaluated or discussed solely
based on theoretical reasoning. Often, experiments are needed to verify or falsify the
assumptions and expectations of an algorithm designer [20].
Still, experiments by themselves only yield data, not understanding. To understand
how algorithms behave, we need a visual or statistical analysis procedure that sum-
marizes the respective data from the experiments. This procedure should provide the
means to understand the implications of the data.
The experiments described in this thesis often concern a comparison of many algorithm
configurations on many problems. Therefore, we need tools that provide a sound and
comprehensible analysis. In that context, we need to discuss two types of problem
setups:

• Single Problem: This serves to determine how algorithms behave on a specific
problem instance.

• Multiple Problems: An overall evaluation, considering all problems (or all prob-
lems of a certain class) at once, to give a general recommendation.

Further, we consider two different types of analysis.

• Single Factor: A distinct set of algorithms is compared, e.g., by performing
pairwise comparisons.

• Multiple Factor: The effects of algorithm parameters are of interest. This may
concern one or several algorithms.

This is very similar to the distinction made by Bartz-Beielstein and Preuss [25], who
also distinguish between single and multiple problems. However, their second dis-
tinction is between single/multiple algorithms rather than factors. We make a slightly
different distinction to stress the nature of the analysis methods that we require. Multi-
ple factor experiments may require different analysis models than single-factor exper-
iments, yet both may be understood to deal with multiple algorithms.
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For a comprehensive discussion on good experimental practice and analysis methods,
we refer to the thesis of Bartz-Beielstein [20]. We do not aim to cover this topic in
much breadth; neither do we suggest any new methods. Rather, we intend to motivate
the methods that we have chosen to analyze our experimental results.

A.1 Visual Analysis of Results
In case of a single factor experiment, we usually want to determine how the perfor-
mances of algorithms compare to each other. One simple, intuitive approach is to use
some form of visual analysis.
We mostly use box plots to visualize the results of our experiments. For instance,
the box plot in Fig. A.1 shows results of two algorithms (A, B) that are clearly quite
different (boxes do not overlap). A third algorithm (C) cannot be clearly distinguished
from the other two (boxes overlap). Box plots also allow determining properties like
variability or symmetry of the data. As such, they may indicate whether some group
is reasonably close to being normally distributed [154]. Yet, they are best-suited for
data sets with many samples [154]. Besides box plots, we occasionally employ other
tools to visualize models or behavior of algorithms. These are described where they
are used.

Algorithm A
Algorithm B
Algorithm C

-2 0 2 4
y

Figure A.1: Example of a box plot. Here, the boxes indicate the first and third quartile, the
bold line is the median, and the outer lines indicate the range of the data without outliers (dots).

A.2 Statistical Analysis of Results
In the following, we will start with the slightly less complex case of comparing dis-
tinct algorithms (single factor), with single and multiple problems. We focus on non-
parametric tests, which are frequently suggested for statistical testing in the fields of
evolutionary computation and swarm intelligence algorithms [76], as well as machine
learning [75].

A.2.1 Single Factor: Comparing Distinct Algorithms
To verify and support the visual analysis, statistical tests should be conducted to answer
the following consecutive questions:
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Question i) Are there any significant differences present in the data?

Question ii) If yes, which specific algorithms are different from each other?

Question iii) For each detected difference, which is the better algorithm?

Furthermore, our statistical tests have to fulfill at least the following needs:

a) The tests need to account for multiple pairwise comparisons between all algo-
rithms.

b) The data contains replicates. Each algorithm is run multiple times on the same
problem instance.

c) If we evaluate performance on multiple problems, we need tests that account for
blocked data, where each block accounts for the problem instance.

One option would be to employ the Analysis of Variance (ANOVA) [177] to an-
swer Question i), a post hoc Tukey’s Honest Significant Difference (Tukey’s HSD)
test [177] to answer Question ii) and a comparison of group means (mean perfor-
mance of each algorithm) to answer Question iii). However, all three methods are
parametric. They make rather strong assumptions that are not always true [75]. Im-
portantly, independence, normality, and homoscedasticity of the data or rather (in case
of the ANOVA) the residuals of the corresponding model are often assumed. Roughly
speaking, independence implies the outcome of one experiment (algorithm run) does
not influence the outcome of another. Normality means that the data (or the residu-
als of a model) are normally distributed (in each group and block). Homoscedasticity
implies that the variances in different groups (or blocks) are the same. Conversely,
data is heteroscedastic if variances vary between groups (or blocks). In our context,
algorithms are groups and test instances are blocks.
In the case of the experiments presented in this thesis, independence is usually satisfied
since each observation is associated to a separate run of an optimization algorithm. The
other two assumptions are not guaranteed to hold.
Let us first consider the normality assumption. The measured performance (e.g., at-
tained objective function values) after a limited number of evaluations clearly has a
lower bound (i.e., the optimum), and is often skewed. The data distribution may even
be multimodal, e.g., if an algorithm is prone to converge to two or more distinct lo-
cal optima. These facts contradict the assumption of normality because the normal
distribution is unbounded, symmetric, and unimodal. Unless additional explanatory
variables are available (e.g., the starting point of the optimization run), such properties
of the data will necessarily also be present in the residuals of the analysis model.
The homogeneity of variance (homoscedasticity) assumption may also often be vio-
lated. For example, a well performing algorithm may have less variance than, e.g., an
algorithm that performs similar to random search.
Therefore, we may need non-parametric tests, which are able to deal with the follow-
ing types of data:
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d) Data from different and unknown distributions.

e) Data with different variances between groups and/or blocks.

According to Büning and Trenkler [49], non-parametric tests have the advantage of
requiring less (or weaker) assumptions. In addition, non-parametric tests are easier to
compute, more efficient if parametric assumptions do not hold, and less affected by
robustness problems [49]. Still, if parametric assumptions hold, parametric tests are
necessarily more efficient [49]. We can confirm our choice of non-parametric tests
with the gathered data, to avoid choosing non-parametric tests in a case where they
are clearly not required. In general, we would rather err on the side of caution. That
is, we prefer risking a loss of test power by choosing an unnecessary non-parametric
method [65], rather than risking a false-positive result from an unwarranted parametric
test.
We can check the model residuals for normality and homoscedasticity with some visual
support. Examples for the corresponding analysis plots can be seen in Fig. A.2. Here,
a linear model has been fit with two different data sets. For each set, two groups are
compared. The upper two plots show a case where the data is normally distributed.
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Figure A.2: Two examples for analysis plots for checking assumptions of the linear regression
(or ANOVA) model. The upper two plots show a case with normally distributed, homoscedastic
data. The lower plot shows an example where the data is non-normal (here: exponential
distributed) and heteroscedastic.
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Since the left-hand side plot has no obvious structure, the data seems to have equal
variance between groups (homoscedastic). And since all points in the right-hand side
quantile-quantile plot (QQ-plot) are close to the diagonal line, it can be concluded that
the data is (approximately) normally distributed. The lower plots show an example
where the data is both non-normal (here: exponential distributed) and heteroscedastic.
The plots depict structure on the left and deviations from the diagonal on the right.
When it is confirmed that these assumptions do not hold, we use the following non-
parametric tests. For the non-blocked case (single problem), a Kruskal-Wallis rank
sum test [153] is first performed to determine an answer to Question i). According to
Kruskal and Wallis [153], the test checks whether there “is a tendency for observations
in at least one of the populations to be larger (or smaller) than all of the observations
together.” If this is confirmed (i.e., the null hypothesis is rejected), a post hoc test
procedure for multiple pairwise comparisons by Conover [66] can be used to inves-
tigate the pairwise differences between all algorithms, answering Question ii) [65].
The implementations of these tests are taken from the stats and the PMCMR R pack-
ages [205, 202]: kruskal.test and posthoc.kruskal.conover.test.
The same general procedure is used for the blocked case, but with the Friedman test and
the post hoc Conover test [66, 65]. The implementations are taken from the PMCMR
package [202]: durbin.test and posthoc.durbin.test1.
The null-hypothesis of our tests is that there is no difference between the compared
algorithm performances. We reject the null-hypothesis if the p-value produced by the
test is smaller than the significance level α = 0.05.
Note that even the non-parametric tests make assumptions. According to Conover [65],
the Kruskal-Wallis test assumes that

1. “All samples are random samples from their respective populations.”

2. “In addition to independence within each sample, there is mutual independence
among the various samples.”

3. “The measurement scale is at least ordinal.”

4. “Either the k population distribution functions are identical, or else some of the
populations tend to yield larger values than other populations do.”

Here, Conover denotes the number of compared groups (in our case: algorithms) with
k. For the Friedman test, Conover [65] mentions the following assumptions.

1. “The b k-variate random variables are mutually independent. (The results within
one block do not influence the results within the other blocks.)”

2. “Within each block the observations may be ranked according to some criterion
of interest.”

1Since our datasets are usually complete block designs, the Durbin and Friedman tests are identical.
The Durbin implementation is chosen because it allows for replications.
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Here, b refers to the number of blocks (in our context: the number of test problems).
The corresponding multiple pairwise comparison (post hoc) tests for Friedman and
Kruskal-Wallis are based on the same assumptions.
In our case, none of these assumptions should be as problematic as the parametric
assumptions. In addition, ties, which are quite likely to occur in discrete optimization,
are not an issue [65].
Additional, more restrictive assumptions may be relevant, depending on the estimate
of location that is used to interpret the test. This relates to the remaining Question iii),
about how to determine which of two significantly different algorithms is the better
one. Firstly, comparing group means may not be a good idea, since using the mean
would again imply normality of the data. If the data is well-behaved, the median is a
good alternative. However, this assumes that the compared distributions have the same
shape.
Consider the following illustrative example. We compare two groups (a, b) and observe
the respective outcome visualized in the histogram in Fig. A.3. The Kruskal-Wallis
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Figure A.3: Counts of observed outcomes, separated by observed group. This figure illustrates
potential problems if the median is used to estimate the location of a distribution.

rank sum test would indicate that the differences between these groups are significant,
with a p-value of approximately 0.0018. At the same time, the median of both groups
is zero. Hence, the difference in location (according to the median) is also zero. This
counterintuitive result is caused by the fact that the compared distributions have dif-
ferent shapes, being heavily skewed in opposite directions. This demonstrates why the
median may be unsuited as an estimate of location.
Therefore, we may need a non-parametric estimate of location, analogous to the non-
parametric tests. To that end, we could use, e.g., the median of all pairwise differences,
which is called the Hodges-Lehman estimate of location [123]. We decided for the
intuitive solution of using the basis of the employed tests: rank sums. That is, the
sum of all ranked observations (ranked in each block, in case of the Friedman test) is
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computed. The difference of the sums is used to determine which algorithm is better.
If the number of replicated evaluations differs, mean ranks are better suited. For the
illustrative example in Fig. A.3, the Hodges-Lehman estimate and the difference in
rank sums both indicate that group (a) yields larger observations than group (b).
In some use cases, the above-described test procedures may yield a very large number
of pairwise comparisons (e.g, the experiments in Chapters 6 and 8). This whole set of
pairwise comparisons is often rather hard to read. For example, comparing 20 algo-
rithms results into 190 individual comparisons, which can hardly be represented in an
easily readable table. While test results may also be visualized as a graph (cf. [270]),
these graphs tend to get equally hard to read once the number of comparisons is large.
To produce a condensed result, the pairwise comparisons are used to generate rank-
ings, using a form of comparison sorting. Each algorithm that is never significantly
worse than any other algorithm receives the first rank and is removed from the list.
Each remaining algorithm that is not worse than any of the other remaining algorithms
receives the second rank and is removed from the list. This procedure is repeated until
all algorithms are ranked. Clearly, it is easier to digest the resulting 20 ranks than a
table with 190 comparisons.
As a drawback, the ranking does not convey the complete information from the tests;
it only presents a summary of the results. Notably, a difference in the rank of two
algorithms does not imply that the algorithms are evaluated to be different in a direct
comparison. Hence, it is recommendable to report all pairwise comparisons as long as
their number is small enough.

A.2.2 Multiple Factor: Algorithms and Parameters

In the multiple factor case, the analysis often has a different question to answer. In-
stead of comparing distinct algorithms, we are interested in the effects that different
parameters have on the algorithm performance. For instance, we may want to know
how different population sizes or mutation rates affect the performance of an EA.
One way to deduct this information is to use linear regression models for multiple
variables [154]. However, just as in the single factor case, assumptions are a potential
problem: we may have to deal with non-normality and heteroscedasticity. Even worse,
non-parametric methods that relax these assumptions are not easily available for the
multiple factor case.
We use two tools that help to adapt standard regression models: When the residuals
seem to be non-normally distributed, we can try to transform the data, e.g., with the
Box-Cox transformation [154]. Usually, the underlying idea of transformations is to
apply a monotonic function to the data, so that the ranks are not changed yet the shape
of the distribution becomes approximately normal. To deal with heteroscedasticity, we
can try to employ a weighted least squares approach [154]. Intuitively, the weighted
least squares approach gives larger weights to samples with a small variance.
Please note that transformations and weighted least squares are not a universal rem-
edy. For instance, transformations may fail to yield good results when the data dis-
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tribution is not unimodal. Multimodal distributions are not unlikely in the context of
optimization. Moreover, effects from a model with transformed observations may not
be that easy to interpret. Weighted least squares may be impeded by inaccurate vari-
ance estimates, or other properties of the data, such as outliers, may affect the analysis
negatively.
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Appendix B

Employed Kernels and Distances

This appendix collects various kernels and distance measures that have been employed
in this thesis. We provide the following explanations to make sure that all employed
kernels can be clearly identified by the reader, and to avoid confusion caused by con-
flicting naming conventions in the literature. Where available, we also attempt to pro-
vide further information on aspects like definiteness. Not all measures are described
here in detail. Where they are central to the corresponding discussions, the kernels
have been described in the main body of text.
Many of the listed distance measures are available in the R-package CEGO [263].

B.1 Real Vectors
While this thesis mostly deals with discrete problems, some parts also involve real-
valued distances, e.g., Section 8.4. The following distances are used.

• The Euclidean distance dEuc(x, x
′) =

√∑m
i=1(xi − x

′
i)
2

• The Chebyshev distance dChe(x, x
′) = max

1≤i≤m
(|xi−x′i|). The Chebyshev distance

is non-CNSD (see Section 7.4.4).

• A distance based on a p-norm with a degenerate value of p = 0.5. We denote
this measure as the L0.5 distance dL0.5(x, x

′) = (
∑m

i=1 |xi − x
′
i|p)1/p.

Proposition 6. The distance measure dL0.5(x, x
′) is non-CNSD.

Proof. With x ∈ R2 and X = {[1 1], [0 1], [1 0], [0 0]}, the corresponding
distances are dL0.5([1 1], [0 1]) = 1, dL0.5([1 1], [1 0]) = 1, dL0.5([1 1], [0 0]) =

A subset of the distance measures listed in this appendix has already been described in previ-
ous publications [273, 271, 264, 266]. Some of these descriptions are taken verbatim. Several
descriptions have been revised to integrate them into the structure and notation of this thesis.
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4, dL0.5([0 1], [1 0]) = 4, dL0.5([0 1], [0 0]) = 1, and dL0.5([1 0], [0 0]) = 1.
With the resulting 4 × 4 distance matrix D and c = [-1 1 1 -1]T, we receive
cTDc = 8 > 0. This proves that the distance is not CNSD.

• A distance based on the test statistic of the two-sample independent (unpaired)
t-test [203] dt-test(x, x

′) = (x̄− x̄′)/
√

(var(x) + var(x′))/m.

Proposition 7. The distance measure dt-test(x, x
′) is non-CNSD.

Proof. With x ∈ R2 andX = {[0.1 0.1], [0.4 0.6], [0.9 0.1]}, the corresponding
distances are dt-test([0.1 0.1], [0.4 0.6]) = 4,
dt-test([0.1 0.1], [0.9 0.1]) = 1, and dt-test([0.4 0.6], [0.9 0.1]) = 0. With the
resulting 3× 3 distance matrix D and c = [1 1 -2]T, we receive cTDc = 4 > 0.
This proves that the distance is not CNSD.

• A non-stationary distance dNon-stat(x, x
′) =

∑m
i=1 |xi − x

′
i|(|xi|3 + |x′i|3)/2.

Proposition 8. The distance measure dNon-stat(x, x
′) is non-CNSD.

Proof. With x ∈ R and X = {−1, 0, 2}, the corresponding distances are
dNon-stat(−1, 0) = 0.5, dNon-stat(−1, 2) = 13.5, and dNon-stat(0, 2) = 8. With the
resulting 3× 3 distance matrix D and c = [1 -1.25 0.25]T, we receive cTDc =
0.5 > 0. This proves that the distance is not CNSD.

B.2 Discrete Vectors and Sequences
We used distances that are applicable to discrete vectors, that is, vectors with elements
that are binaries or categorical integers. These distances also apply to strings or se-
quences. Many distance measures are described in the literature [78]. We used:

• The Hamming distance metric

dHam(x, x′) =
1

m

m∑
i=1

ai where ai =

{
0 if xi = x′i,
1 otherwise.

Here, m denotes the number of vector elements, i.e., the number of bits. An
identical definition can be used, e.g., for categorical integers, sequences, permu-
tations or strings with equal number of elements.

• The Levenshtein distance is usually used for strings. It counts the minimal num-
ber of deletions, substitutions, and insertions required to transform one string
into another [234]. The Levenshtein distance is non-CNSD, see Section 7.4.4.

• The Longest Common Substring (LCStr) distance is m − LCS(x, x′). Here
LCS(x, x′) is the length of the longest common substring [78]. This distance
is non-CNSD (see Section 7.4.4).
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• The Jaro-Winkler distance is based on the number of matching characters in two
strings as well as the number of transpositions required to bring all matches in the
same order. We use the implementation in the stringdist R package [249].
The Jaro-Winkler distance is non-CNSD (see Section 7.4.4).

• The Optimal String Alignment distance (OSA) is a non-metric edit distance
that counts insertions, deletions, substitutions, and transpositions of characters.
Each substring can be edited no more than once. It is also called the restricted
Damerau-Levenshtein distance [44]. We use an implementation from the R
package stringdist [249]. The OSA distance is not CNSD (cf. Section 7.4.4).

B.3 Permutations
For permutations, a large variety of distance measures is available [78]. In the fol-
lowing, the distance measures that were used in this thesis are briefly explained. Not
all of them are expected to be good measures of distance between permutations. For
instance, some may not be invariant to relabeling.
Here, Πm is the set of all permutations of the numbers {1, 2, . . . ,m}. A permutation
has exactly m elements. We denote a single permutation with x ∈ Πm and x =[
x1 x2 . . . xm

]
, where xi is the i-th element of the permutation. For example, a

permutation in this notation is x =
[
3 5 1 4 2

]
∈ Π5.

• The Levenshtein distance is an edit distance that counts the minimum number of
deletions, insertions, and substitutions required to transform one string into an-
other. The terms Levenshtein distance and edit distance are sometimes used as
synonyms, but the Levenshtein distance is only one example of an edit distance.
An implementation is described by Wagner and Fischer [255]. Since the Leven-
shtein distance is usually applied to strings rather than permutations, it has to be
noted that a single edit operation (delete, insert, and substitute) does not produce
a valid permutation of the same length. To yield valid permutations, several op-
erations have to be performed in sequence (e.g., delete + insert, or substitution +
substitution). The Levenshtein distance is non-CNSD (see Section 7.4.4).

• A swap operation transposes two adjacent elements of a permutation. Hence, the
Swap distance can be defined as the minimum number of swaps required to trans-
form one permutation into another. Other names are Precedence distance [221]
and Kendall’s Tau [147, 229]. The Swap distance is [229]

dSwa(x, x
′) =

1

s

m∑
i=1

m∑
j=1

zij where zij =

{
1 if xi < xj and x′i > x′j,
0 otherwise.

with scaling factor
s = (m2 −m)/2.
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Satisfaction of metric conditions can be shown either via the relative order matrix
(cf. [178]) or simply by the fact that it is an edit distance with reversible edit
operations (see Section 4.3).

• An interchange operation transposes two arbitrary elements of a permutation.
Correspondingly, the Interchange distance (or Cayley distance) is the minimum
number of interchanges required to transform one permutation into another [221].
An algorithm is given by Schiavinotto and Stützle [221]. The Interchange dis-
tance is non-CNSD (see Section 7.4.4).

• The Insert distance is an edit distance. The corresponding edit operation is a
combination of insertion and deletion. A single element is moved from one
position (delete) to a new position (insert). This distance is related to the longest
common subsequence LCSeq(x, x′). The longest common subsequence is the
largest number of elements that follow each other in both permutations, with
interruptions. The corresponding distance is

dIns(x, x
′) = m− LCSeq(x, x′).

An algorithm for this computation is described by Hirschberg [122]. The dis-
tance is also called Ulam’s metric [221]. It is non-CNSD (see Section 7.4.4).

• If Lstr(x, x
′) is the respective length of the longest substring that two strings have

in common, then the Longest Common Substring distance is

dLCStr(x, x
′) =

m− Lstr(x, x
′)

m− 1
.

Here, the permutations are interpreted as strings. This distance is non-CNSD
(see Section 7.4.4). It has also been called the factor distance [78].

• The R-distance [54, 229] counts how often two elements are neighbors and oc-
cur in the same order in one permutation, but not in another permutation. It is
identical to the uni-directional adjacency distance [210]. It is computed by

dR(x, x′) =
m−1∑
i=1

yi where yi =

{
0 if ∃j : xi = x′j and xi+1 = x′j+1,
1 otherwise.

Following the reasoning of Moraglio [178], we can easily show that the R-
distance is a metric.

Proposition 9. The R-distance is a metric for permutations.

Proof. We can represent each permutation with its R-matrix. In this matrix, each
row indicates the first and each column the second element in a sequence of two
elements. E.g., the permutation

[
1 2 3

]
has the R-matrix0 1 0

0 0 1
0 0 0
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since 2 follows 1 (second column, first row is set to 1) and 3 follows 2 (third
column, second row is set to 1). Correspondingly, the permutation

[
1 3 2

]
has the R-matrix 0 0 1

0 0 0
0 1 0.


Clearly, the Hamming distance between two R-matrices is the same as the R-
distance of the corresponding permutations. Each unique permutation has a
unique R-matrix. From each unique R-matrix, a unique permutation can be
identified. Hence, the R-matrix is a bijection. R-matrices are a subset of binary
matrices. The Hamming distance is metric on binary matrices, and therefore
also a metric on the subset. Since the R-matrix is a bijection, it follows that the
R-distance has to be a metric.

• The (bi-directional) adjacency distance [210, 221] counts how often two ele-
ments are neighbors in one permutation, but not in the other permutation. The
order of the two elements is irrelevant. This distance is similar to the uni-
directional adjacency distance. The adjacency distance is a pseudo-metric [178].
Clearly, the adjacency distance of a permutation to the reverse of itself is zero.
Hence, the distance violates the condition for identity preservation (see Sec-
tion 4.3).

• The Position distance [221] is identical to the Deviation distance or Spearman’s
footrule [229],

dPos(x, x
′) =

1

s

m∑
l=1

|i− j| where xi = x′j = l

with scaling factor

s =

{
(m2 − 1)/2 if m is odd
m2/2 if m is even

.

Metric conditions can be proved in a similar way as for R-distance.

Proposition 10. The Position distance is a metric for permutations.

Proof. To calculate the position distance of permutations x and x′, the first step
is to calculate the inverse of both permutations x̄, x̄′ (i.e., determine the order-
ing). Then, the Position distance is simply the Manhattan distance of the inverse
permutations.

dPos(x, x
′) = dMan(x̄, x̄

′)

Clearly, the Manhattan distance is a metric for permutations (due to permutations
being a subset of all real vectors). Since permutation inversion is a bijection, it
follows that the Position distance has to be a metric.
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• The non-metric Squared Position distance corresponds to Spearman’s rank cor-
relation coefficient [229]. The square root of this distance is a metric because it
is essentially the Euclidean distance on orderings.

dPos2(x, x
′) =

1

s

m∑
l=1

(i− j)2 where xi = x′j = l

with scaling factor
s = (m3 −m)/3

• The Hamming distance for permutations can be based on the same definition that
is used for binary vectors. A scaling factor of s = m scales the distance to the
interval [0; 1].

• The Euclidean distance for permutations,

dEuc(x, x
′) =

1

s

√√√√ m∑
i=1

(xi − x′i)2,

is not an intuitive choice. It is more commonly used for continuous parameter
spaces. Since permutations can be seen as a subset of all real vectors, the Eu-
clidean distance is also a distance metric for permutations. The only adaption
to permutation space is the scaling factor s, to guarantee that the distance yields
values between zero and one,

s =

{ √
4c(c+ 1)(2c+ 1)/3 if m is odd, with c = (m− 1)/2√
2c(4c2 − 1)/3 if m is even, with c = m/2

.

• The Manhattan distance for permutations (also called A-Distance [229, 54]) is

dMan(x, x
′) =

1

s

m∑
i=1

|xi − x′i|

It is usually used for integer spaces, and it is not invariant to relabeling. The only
adaption to permutations is the scaling factor s, to guarantee values between zero
and one.

s =

{
(m2 − 1)/2 if m is odd
m2/2 if m is even

• The Chebyshev distance (also denoted as L∞ metric) is also not intuitively used
for permutations. It is defined as

dChe(x, x
′) =

1

s
max
1≤i≤m

(|xi − x′i|)

with the trivial scaling factor s = m− 1. The Chebyshev distance is non-CNSD
(see Section 7.4.4).
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• The Lee distance [160] has been developed as a string distance but can be applied
to permutations [77].

dLee(x, x
′) =

m∑
i=1

min(|xi − x′i|,m− |xi − x′i|).

It is a metric [213].

• The non-metric Cosine distance is based on the scalar product of two permuta-
tions. It is derived from the cosine similarity [233] of two vectors:

dCos(x, x
′) = 1− x · x′

||x|| ||x′||

Here, x · x′ is the dot product, and ||x|| indicates the length of a vector. In both
cases, the permutations are interpreted as real-valued vectors.

• If the position of a permutation x in the lexicographic ordering of all permuta-
tions of the same length is Lex(x), then the lexicographic distance metric is

dLex(x, x
′) =

1

s
|Lex(x)− Lex(x′)|.

with s = m!− 1.

B.4 Signed Permutations
While there are applications where signed permutations are relevant [254], we did not
consider them in much detail. We only provided an example for non-CNSDness of
the reversal distance in Section 7.4.4. The reversal distance for signed permutations
is an edit distance, based on the number of reversals required to transform one signed
permutation into another. Unlike the unsigned case, the reversal distance for signed
permutations can be computed in linear time [15, 56]. We use the non-cyclic reversal
distance provided in the Genome Rearrangements Analysis under Parsimony and other
Phylogenetic Algorithms (GRAPPA) library version 2.0 [14].

B.5 Trees
Distances for trees are described in more detail in Section 9.1, we only briefly describe
these here.

• The Tree Edit Distance (TED) counts the number of node deletions, node inser-
tions, and node relabelings required to transfer one tree into another [196]. The
TED is non-CNSD, see Section 7.4.4.
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• The Phenotypic Distance (PhD) is not necessarily a distance on trees. In the form
it is used here, it is a distance on the output of symbolic expressions, which may
be represented by trees. The specific variant of the PhD we used is non-CNSD
(see Section 9.1.3).

• The Structural Hamming Distance (SHD) could be seen as an approximation of
the TED. The SHD performs a recursive count of the number of different nodes
and labels of two trees. The recursion proceeds as long as the two trees have
matching structures. Two variants are discussed. The first variant compares two
trees without aligning them (SHD1). The second variant aligns the trees such
that the SHD between the trees is minimal (SHD2). The SHD2 variant is non-
CNSD (see Section 9.1.3).

B.6 Hierarchical Search Spaces
Hierarchical search spaces contain variables that require some condition to be satisfied.
If the condition is satisfied, the corresponding variable is active, or has an impact on
the objective function. Such conditional relationships can be represented as graphs.
The data type of the variables themselves may vary, e.g., it may be real, categorical,
or binary. Because the kernels for hierarchical search spaces are the main subject of
Section 9.2, we do not describe them here, but refer to that section for details.
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Appendix C

Variation Operators

In the following, we list various variation operators that were used in this thesis. Brief
explanations and / or references to the literature are given. Here, x or x′ are parents and
x∗ denotes an offspring (after mutation or recombination). Other publications, e.g., the
book by Eiben and Smith [82], give a more detailed overview of variation operators.
However, the following remarks are necessary to clarify the terminology and usage of
these operators.

C.1 Permutation Operators
We use the same notation as in Appendix B.3. In the following, a ∈ N and b ∈ N.

C.1.1 Mutation
The mutation operators for permutations are defined in the following. They share one
parameter, the mutation rate rmut ∈ R+. The mutation rate defines the number of times
that a mutation operator is applied consecutively nmut = dmrmute.

• Swap mutation transposes two adjacent elements of a permutation.

x =
[
x1 . . . xa xb . . . xm

]
x∗ =

[
x1 . . . xb xa . . . xm

]
,

with 1 ≤ a < (m− 1) and b = a+ 1.
• Interchange mutation transposes two arbitrary elements of a permutation.

x =
[
x1 . . . xa−1 xa xa+1 . . . xb−1 xb xb+1 . . . xm

]
x∗ =

[
x1 . . . xa−1 xb xa+1 . . . xb−1 xa xb+1 . . . xm

]
,

with 1 ≤ a ≤ m and 1 ≤ b ≤ m.

Please note that swap, interchange and reversal mutation operators for permutations have
already been described in this form by Zaefferer et al. [266].
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• Insert mutation removes a certain element at one position and inserts it some-
where else.

x =
[
x1 . . . xa−1 xa xa+1 . . . xb−1 xb xb+1 . . . xm

]
x∗ =

[
x1 . . . xa−1 xb xa xa+1 . . . xb−1 xb+1 . . . xm

]
,

with 1 ≤ a ≤ m and 1 ≤ b ≤ m.
• Reversal mutation reverses the ordering of a sub-sequence of the permutation.

x =
[
x1 . . . xa xa+1 . . . xb−1 xb . . . xm

]
x∗ =

[
x1 . . . xb xb−1 . . . xa+1 xa . . . xm

]
,

with 1 ≤ a < b ≤ m.

C.1.2 Recombination

For the sake of brevity, we only briefly remark on these operators. For more details,
we refer to Larranaga et al. [158] and Eiben and Smith [82].

• Cycle crossover “attempts to create an offspring from the parents where every
position is occupied by a corresponding element from one of the parents” [158].
It “is concerned with preserving as much information as possible about the ab-
solute position in which elements occur” [82].

• Order crossover “constructs an offspring by choosing a substring of one parent
and preserving the relative order of the elements of the other parent.” [158] It
intends “to transmit information about relative order” [82].

• Position-based crossover is a variant of order crossover [158]. It selects a ran-
dom number of elements from a parent and transmits them to their original po-
sitions in the offspring. The remaining elements are inserted in their original
order.

• Alternating position crossover “creates an offspring by selecting alternately
the next element of the first parent and the next element of the second parent,
omitting the elements already present in the offspring.” [158]

C.2 Binary String Operators

This section lists operators for bit strings or binary strings x ∈ B. We denote a single
binary string with m bits as x =

[
x1 x2 . . . xm

]
where xi is a specific bit of the

string at position i. We denote x̄i as the inversion or flip of a bit i, i.e., if xi = 0 then
x̄i = 1. For example, a binary string is x =

[
0 0 1 1 0

]
∈ B5. In the following,

a ∈ N and b ∈ N.
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C.2.1 Mutation
• Bit flip inverses a single bit.

x =
[
x1 . . . xa . . . xm

]
x∗ =

[
x1 . . . x̄a . . . xm

]
,

with 1 ≤ a ≤ m.
• Block inversion inverses (flips) all bits in a block, or substring, of a binary string.

x =
[
x1 . . . xa xa+1 . . . xb−1 xb . . . xm

]
x∗ =

[
x1 . . . x̄a x̄a+1 . . . x̄b−1 x̄b . . . xm

]
,

with 1 ≤ a < b ≤ m.
• Cycle moves all elements to the right by a positions, cyclically.

x =
[
x1 . . . xa+1 . . . xm

]
x∗ =

[
xm−(a−1) . . . x1 . . . xm−a

]
,

with 1 ≤ a ≤ (m− 1).

C.2.2 Recombination
• 1-point crossover selects a single cut point. The elements of the string before

that point are chosen from parent x, the rest from the second parent x′.
• 2-point crossover selects two cut points. The elements of the string between

those points are chosen from parent x, the rest from the second parent x′.
• Uniform crossover Elements are chosen uniform randomly from both parents
x, x′.

• AND crossover The two parents x, x′ are combined by an element-wise logical
AND operation, that is, x∗i = xi ∧ x′i.

C.3 Tree Operators
For the GP application in Section 9.1, we needed variation operators for trees. The
corresponding operators were taken from the rgp package [91].
For mutation, mutateSubtreeFast was used. This operator randomly replaces,
deletes, or creates new subtrees. The subtrees are grown up to a maximum tree depth
specified by the user. In addition, terminal nodes may be created, which can be constant
coefficients or symbolic variables. Each of these optional events involves a parameter
that specifies the probability of an event.
Furthermore, the EA employed crossoverexprFast for recombination. This re-
combination operator randomly selects a subtree of the first parent, and replaces it with
a random subtree of the second parent.
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Appendix D

Additional Figures

D.1 Box Plots: Multi-Kernel Experiments
The Figs. D.1 to D.5 show the remaining box plots of the results from Section 6.3.2,
for the TSP, WTP, UNI, QAP, and FSP instances. The ATSP instances are shown in
Fig. 6.2.
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Figure D.1: Box plots for the results of different optimization runs with different kernels for
permutations (or different methods to select/combine kernels). The depicted test problems are
all TSP instances. Smaller values are better.
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Figure D.2: Box plots for the results of different optimization runs with different kernels for
permutations (or different methods to select/combine kernels). The depicted test problems are
all WTP instances. Smaller values are better.
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Figure D.3: Box plots for the results of different optimization runs with different kernels for
permutations (or different methods to select/combine kernels). The depicted test problems are
all UNI instances. Smaller values are better.
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Figure D.4: Box plots for the results of different optimization runs with different kernels for
permutations (or different methods to select/combine kernels). The depicted test problems are
all QAP instances. Smaller values are better.



194 D.1. BOX PLOTS: MULTI-KERNEL EXPERIMENTS

Figure D.5: Box plots for the results of different optimization runs with different kernels for
permutations (or different methods to select/combine kernels). The depicted test problems are
all FSP instances. Smaller values are better.
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D.2 Kriging with Indefinite Kernels: Examples
The Figs. D.6 to D.9 show visualizations of models based on different configurations
for the correction of indefinite kernels. The depicted models are based on the example
presented in Section 8.3.
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Figure D.6: Example: Kriging models based on the nearest correlation matrix (PSD) or the
nearest Euclidean matrix (CNSD).
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Figure D.7: Example: Kriging models with spectrum flip, based on different correction types
(NSD, CNSD, PSD) and repair methods (none, re-transform, linear, nearest-neighbor).
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Figure D.8: Example: Kriging models with spectrum clip, based on different correction types
(NSD, CNSD, PSD) and repair methods (none, re-transform, linear, nearest-neighbor).
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Figure D.9: Example: Kriging models with spectrum square, based on different correction
types (NSD, CNSD, PSD) and repair methods (none, re-transform, linear, nearest-neighbor).
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Notation

a, b, c, . . . scalars

x special case: arbitrary data type, e.g., a scalar, vector, string, permutation, or
graph.

a,b, c, . . . vectors

ai i-th element of a vector, string, or sequence

A,B,C, . . . matrices

Aij element in i-th row and j-th column of a matrix

A,B,C, . . . sets

|A| cardinality of a set (number of elements in the set)

a(i) i-th element of the set A

a
(i)
j j-th vector element of a(i)

a′, a′′, a∗, atext different instances of a

{a, b, c} a set with the elements a, b, and c.[
a b c

]
a row vector (or sequence, permutation) with the elements a, b, and c.ab

c

 =
[
a b c

]T respectively, a column vector

[a, b] an interval, running from a to b, including a and b

a = 1, 2, . . . , b shorthand for a = 1, a = 2, . . ., a = b
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List of Symbols

Acronyms

k-NN k-nearest neighbors, page 30

ACO ant colony optimization, page 36

ANN artificial neural network, page 21

ANOVA analysis of variance, page 172

ATSP asymmetric traveling salesperson problem, page 51

CEGO combinatorial efficient global optimization, page 49

CNSD conditionally negative semi-definite, page 43

COCO comparing continuous optimizers, page 148

CPSD conditionally positive semi-definite, page 43

CV cross-validation, page 66

CVM Cramèr-von Mises, page 109

DIRECT dividing rectangles algorithm, page 54

EA evolutionary algorithm, page 16

ECDF empirical cumulative distribution function, page 159

EDA estimation of distribution algorithm, page 36

EGO efficient global optimization, page 27

EI expected improvement, page 27

ES evolution strategy, page 18

FDC fitness distance correlation, page 64

FDDC fitness-difference distance correlation, page 65
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FSP flow-shop scheduling problem, page 51

GLG Gaussian landscape generator, page 148

GP genetic programming, page 120

KR Kriging, page 157

LASSO least absolute shrinkage and selection operator, page 68

LCB lower confidence bound, page 27

LCStr longest common substring, page 52

LOESS locally weighted regression, page 131

MC max-cut, page 52

MIES mixed-integer evolution strategy, page 19

MLE maximum likelihood estimation, page 23

MRF Markov random fields, page 37

MSE mean square error, page 130

ND negative definite, page 43

NKL NK-landscapes, page 52

NSD negative semi-definite, page 43

OPD optimization for probing definiteness, page 85

OSA optimal string alignment, page 180

PD positive definite, page 43

PhD phenotypic distance, page 124

PI probability of improvement, page 27

PSD positive semi-definite, page 41

QAP quadratic assignment problem, page 51

QQ quantile-quantile, page 174

RBFN radial basis function network, page 21

RF random forest, page 21
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RMSE root mean square error, page 92

RS random search, page 52

RSPD random sampling for probing definiteness, page 84

SHD structural Hamming distance, page 125

SHD1 structural Hamming distance, original variant without alignment, page 125

SHD2 structural Hamming distance, with alignment, page 125

SMBO surrogate model-based optimization, page 9

SR symbolic regression, page 120

STR strategy, page 29

SVM support vector machine, page 21

TED tree edit distance, page 125

TSP traveling salesperson problem, page 51

UNI unimodal problem, page 52

WTP weighted tardiness problem, page 51

Scalars

α significance level, page 174

β model coefficient, page 39

γ parameter that specifies a chosen distance measure or kernel function, page 66

∆y fitness difference, page 65

ε error term in a model, page 22

εtol a small tolerance value that is used when checking for whether a matrix is defi-
nite, page 85

η nugget, regularization constant, page 25

θ parameter of an exponential kernel function, page 22

κ condition number of a matrix, page 45

λ eigenvalue, page 43
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λ1 smallest eigenvalue, page 43

λ̂ a critical eigenvalue that determines whether a matrix is CNSD, page 44

λn largest eigenvalue, page 43

µ mean value, page 17

ρ parameter of a kernel for conditional variables, page 138

σ2 variance, or step-size, page 17

σd standard deviation of distances, page 64

σy standard deviation of observations, page 64

τ learning rate for the self-adaptive control of a numerical EA parameter, page 19

a an index of a string or vector, a ∈ N, page 186

b an index of a string or vector, b ∈ N, page 186

c arbitrary real-valued coefficient, page 43

dc number of constant coefficients in a symbolic regression tree, page 122

li lower bound of the i-th variable, page 138

m dimensionality of a search or input space, number of elements in a vector,
page 10

n number of samples or observations, page 22

nbit number of bits that contribute to fitness, in case of NK-Landscapes, page 52

nb number of branches of a tree node, arity, page 125

ncat number of levels of a categorical variable, page 32

nλ+ number of solutions that yield indefinite distance matrices, page 84

no number of samples in the context of a larger kernel matrix approximated by the
Nyström method, page 106

noff number of offspring, page 17

npop population size, page 17

nsim number of simulation samples, page 150

ntest number of test functions, page 152
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p parameter of an exponential kernel function, page 22

pλ+ proportion of solutions that yield indefinite distance matrices, page 84

ps probability to change a categorical parameter of an EA in self-adaptive param-
eter control, page 19

q reciprocal of a distance, page 103

r number of kernels, or distances, page 64

rmut mutation rate, page 53

s input variable of a regression problem, in the context of symbolic regression,
page 122

t number of sets, or matrices, page 84

ui upper bound of the i-th variable, page 138

v scaled variable value, used in the Wedge-kernel, page 141

w number of reference solutions, page 109

y observation, outcome of a model or experiment, page 22

y∗ difference between a predicted value and the observed minimum, page 28

Vectors

∆y vector of fitness differences, page 65

ε vector of independent random samples, page 150

0 vector of zeros, page 43

1 vector of ones, page 23

c arbitrary real-valued vector of coefficients, page 43

d vector of distances, page 64

e vector of ones, except for the last element that is the square root of the number
of elements, page 102

k vector of correlations or kernel values between training data and a new data
sample, page 24

y a vector of observations, or fitness values, page 22

z a vector of independent random samples, page 17
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ŷ vector result of estimation or prediction, page 151

ŷcs vector result of a conditional simulation, page 151

ŷs vector result of a simulation, page 150

Matrices

Λ diagonal matrix of eigenvalues, page 99

A a square, symmetric, real matrix, page 43

B matrix used for checking conditional definiteness, page 43

C covariance matrix, page 23

Ccs conditioned covariance matrix of simulation samples, page 151

Cs covariance matrix of simulation samples, page 150

D distance matrix, page 41

D̂ a matrix computed with Eq. (4.7), to determine whether a distance matrix is
CNSD, page 83

I identity matrix, page 44

K correlation matrix or kernel matrix, page 22

Kcs conditioned correlation matrix of simulation samples, page 151

Ks correlation matrix of simulation samples, page 150

Kx cross-correlation matrix of simulation samples and training samples, page 151

P matrix used for checking conditional definiteness, page 43

Q matrix required for transformation of an indefinite to a CNSD matrix, page 102

U matrix of eigenvectors, page 99

Sets and Spaces

Π permutation space, page 180

B binary string space, page 187

N natural numbers, page 41

R real numbers, page 10
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R+ non-negative real numbers, page 41

Sn search space in the context of OPD, page 85

X search space, page 10

X set of candidate solutions, population, X ⊂ X , page 16

Xs set of simulation samples, page 150

Z population, or solution set for OPD, page 85

Functions

βj(x
∗) data dependent weight coefficient for the superposition of Kriging models,

page 71

∆(x, x′) recursive term in the structural Hamming distance for trees, page 125

δi(x) function that determines the activity of the i-th conditional variable, page 137

ε(x) the error associated with x , page 22

Φ(.) normal cumulative distribution function, page 28

φ(.) normal probability density function, page 28

arity(x) arity of a tree node x, page 125

corr(., .) Pearson correlation of two vectors, page 65

d(x, x′) Distance measure, page 41

diag(a) returns a diagonal matrix, with the diagonal specified by a , page 99

EI(x) expected improvement of candidate solution x, page 28

f(x) fitness, objective function, page 10

F (x, c) An upper level fitness/objective function in a bi-level problem, page 122

HD(x, x′) Hamming distance of two labels, or categorical variables, page 125

hi(x) a mapping function used to prove definiteness of a kernel, page 138

I(ŷ) improvement of a value ŷ over the best-observed value min(y), page 27

I(.) indicator function, page 99

k(x, x′) kernel function, page 10
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L(.) likelihood function, page 23

min(.) minimal element of a vector, page 28

N(µ, σ2) normal distribution, page 17

sign (.) sign function, returning a vector with elements 1 for each positive values of
the argument and −1 for all negative values, page 99

ŝ2(x) uncertainty estimate of a Kriging model, page 25

ŷ(x) predictor of a Kriging model, page 24

ŷ(x, c) output of the symbolic expression x with coefficients c for a given data set,
page 122

Other

x candidate solution or sample of unspecified data type, x ∈ X , page 10

x[0] root node of a tree x, page 125

x[i] i-th subtree of the root node of a tree x, page 125

xref a reference sample, or reference candidate solution, page 52
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Index

(1+1)-ES, 18

ant colony optimization, 35, 36
archive, 53
artificial neural network, 21
autoencoder, 33

Bayesian networks, 37
Bayesian optimization, 28
bi-level problem, 122
binary string, 187
bit string, see binary string
black-box, 10, 16, 20
box plot, 171

candidate solution, 10, 16
Cholesky decomposition, 110
combinatorial efficient global optimization,

49, 50
condition number, 45
condition repair, 102, 107

linear combination, 103
nearest neighbor, 103
re-transformation, 103

constructive solid geometry, 135
contrast, 32
correlation, 22

fitness distance, 64
fitness-difference distance, 65
function, 22, 41
Pearson, 64
Spearman, 64

covariance
function, 41
matrix, 23

population, 64
sample, 64

cross-validation, 25, 66
k-fold, 66

definite, 12, 35, 43, 82
adapting, 83
CNSD-correction, 102
conditionally, 43, 44
designing, 83
impact on model quality, 90
indefinite, 12, 43, 45

correcting, 98
negative, 43, 44
negative semi-, 43
NSD-correction, 102
positive, 43, 44
positive semi-, 22, 34, 41, 43, 44, 60
probing, 83

optimization, 85
random sampling, 84

proving, 83
PSD-correction, 101
strictly, 44

dissimilarity measure, 41
distance, 10, 41, 48, 178

adjacency, 182
Arc-kernel, 138
Chebyshev, 109, 178, 183
cosine, 184
edit distance, 42
Euclidean, 178, 183
function, 41
genotypic, 34, 125
Hamming, 179, 183
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hierarchical, 185
Ico-kernel, 139
Imp-kernel, 140
insert, 181
interchange, 181
Jaro-Winkler, 180
L0.5, 109, 178
Lee, 184
Levenshtein, 42, 179, 180
lexicographic, 184
longest common substring, 181
Manhattan, 183
measure, 41
metric, 42
non-stationary, 106, 109, 179
optimal string alignment, 180
phenotypic, 34, 124, 185
position, 182
pseudo metric, 42
R-distance, 181
restricted Damerau Levenshtein, 43
reversal, 184
squared position, 183
structural Hamming distance, 125, 185
swap, 48, 180
t-test, 109, 179
tree edit distance, 125, 184

efficient global optimization, 27, 35, 49
eigen-decomposition, 98, 150
estimation of distribution algorithm, 36
evolutionary algorithm, 16, 50
expected improvement, 27, 33, 70, 102
experimental design, 20, 49

latin hypercube, 21
max-min, 49
random sampling, 49

feature embedding, 98, 104
feature space, 38, 45
fitness, 16
fitness function, 16
flow-shop scheduling problem, 51

Gaussian process, see Kriging

genetic programming, 120

hierarchical search space, 136

identity preservation, 42
ill-conditioning, 26, 45
individual, 16
infill criterion, 20, 27

kernel, 10, 11, 22, 38, 48, 50, 60, 178
Arc-kernel, 137
combination, 66

combineLinear, 68
combineMLE, 69
combineStack, 71
combineSuper, 72

exponential, 48
Ico-kernel, 138
IcoCor-kernel, 139
Imp-kernel, 139
multi-kernel, 61
selection, 63

selectCV, 66
selectFDC, 65
selectFDDC, 65
selectMLE, 66
selectRandom, 63

sigmoid, 45
single-kernel, 61
time-warp, 45
triangular, 141
trick, 38, 45
Wedge-kernel, 141

Kriging, 12, 22–28, 30, 35, 39, 41, 43, 47,
48, 149

conditional simulation, 150
Krigifier, 148
nugget effect, 25, 99, 102, 119
predictor, 24, 49, 70, 71
re-interpolation, 26
simulation, 145, 149
superposition, 67, 71
test function generator, 151
treed Gaussian processes, 32
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uncertainty estimate, 24, 49, 71, 105

LASSO, 68, 69, 70
likelihood, 23

function, 23
linear regression, 39, 56, 67
local optimum, 20, 28
LOESS model, 131
lower confidence bound, 27

Mallows model, 37
Markov random fields, 37
max-cut problem, 52
maximum likelihood estimation, 23, 49,

65, 68, 110, 153
mixed-integer evolution strategy, 19
model

customized, 30, 31
feature extraction, 30, 34
graph, 37
inherently discrete, 30, 32
kernel-based, 30, 34, 137
mapping, 30, 32, 137
naive approach, 29, 30, 137
probabilistic, 36
simulation, 31
surrogate, 9, 20

Moore-Penrose inverse, see pseudoinverse
multi-dimensional scaling, 100
multi-objective, 22, 96
multiple kernel learning, 61, 66, 67
mutation, 16, 17, 186, 188

bit flip, 188
block inversion, 188
cycle, 188
interchange, 186
rate, 186
reversal, 187
swap, 186

nearest matrix, 98, 104
NK-landscape, 52
non-stationarity, 105
non-stationary, 71, 179

normal
cumulative distribution function, 28
distribution, 172
multivariate, 23
probability density function, 23, 28

numerical stability, 45
Nyström approximation, 105

objective function, 10, 16
offspring, 16
one-fifth rule, 18
optimization problem, 10

parameter
control, 18
learning parameters, 19
meta-parameters, 18
of a kernel, 23
of an EA, 17
problem parameters, 18
self-adaptation, 18
tuning, 18

parent selection, 17
permutation, 10, 48, 180
population, 16
probability of improvement, 27
pseudoinverse, 99, 100

QQ plot, see quantile-quantile plot
quadratic assignment problem, 51
quantile-quantile plot, 174

radial basis function network, 21, 30, 35,
41

random forest, 21, 32, 157, 169
random keys, 33
re-transformation, 102
recombination, 16, 187, 188

1-point crossover, 188
2-point crossover, 188
AND-crossover, 188
alternating position crossover, 187
cycle crossover, 187
dominant crossover, 19
intermediate crossover, 16
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order crossover, 187
position-based crossover, 187
uniform crossover, 188

regularization, 26

search space, 10, 16, 47
selection, 16
self-adaptation, 19
sequential parameter optimization, 18, 21
similarity measure, 10, 34, 41
spectrum transformation, 12, 98, 101, 132,

139
clip, 99
diffusion, 100
flip, 99
shift, 99
square, 99

stacked generalization, 69
stacking, see stacked generalization
standardized residuals, 109
statistical testing, 171

analysis of variance, 172
ANOVA, see analysis of variance
assumption of independence, 172
assumptions, 172
Conover post hoc test, 174
Cramèr-von Mises, 109
estimate of location, 175
Friedman test, 174
heteroscedastic, 172
homoscedastic, 172
Kruskal-Wallis rank sum test, 174
non-parametric, 172
parametric, 172
Tukey’s HSD test, 172

strings, 87, 156, 179
support vector machine, 21, 30, 43
surrogate model-based optimization, 20, 49
survival selection, 17
symbolic regression, 120, 122
symmetric, 38, 42

test function, 51, 106, 143, 168
cost, 147

criteria, 145
difficulty, 145
diversity, 146
flexibility, 147
generator, 145, 169
relevance, 144, 147
ruggedness, 147
simulation-based, 145, 169
textbf, 144

traveling salesperson problem, 32, 51
asymmetric, 51

tree, 120
arity, 125
node, 122

triangle inequality, 42

unimodal problem, 52, 92

variable
conditional, 136
dummy, 32
importance, 149
mixed, 32
selection, 68

variogram, 64

weighted least squares, 57, 176
weighted tardiness problem, 51
weld sequence optimization, 31
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