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ABSTRACT
Real-world optimization problems may require time consum-
ing and expensive measurements or simulations. Recently,
the application of surrogate model-based approaches was ex-
tended from continuous to combinatorial spaces. This exten-
sion is based on the utilization of suitable distance measures
such as Hamming or Swap Distance. In this work, such
an extension is implemented for Kriging (Gaussian Process)
models. Kriging provides a measure of uncertainty when
determining predictions. This can be harnessed to calculate
the Expected Improvement (EI) of a candidate solution. In
continuous optimization, EI is used in the Efficient Global
Optimization (EGO) approach to balance exploitation and
exploration for expensive optimization problems. Employ-
ing the extended Kriging model, we show for the first time
that EGO can successfully be applied to combinatorial opti-
mization problems. We describe necessary adaptations and
arising issues as well as experimental results on several test
problems. All surrogate models are optimized with a Ge-
netic Algorithm (GA). To yield a comprehensive compari-
son, EGO and Kriging are compared to an earlier suggested
Radial Basis Function Network, a linear modeling approach,
as well as model-free optimization with random search and
GA. EGO clearly outperforms the competing approaches on
most of the tested problem instances.

Categories and Subject Descriptors
G.1.6 [Mathematics of Computing]: Optimization—Glo-
bal Optimization; G.2.1 [Discrete Mathematics]: Combi-
natorics—Combinatorial Algorithms

General Terms
Algorithms, Experimentation

Keywords
Genetic Algorithm, Surrogate Model-Based Optimization,
Efficient Global Optimization, Kriging, Gaussian Processes,
Distance Measure
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1. INTRODUCTION
Surrogate models are well established tools for cost reduc-

tion of time consuming or expensive simulation and opti-
mization runs in the continuous domain. Surrogate models,
as employed in methods like Efficient Global Optimization
(EGO) [15] or Sequential Parameter Optimization (SPO) [3]
offer several advantages. They reduce the number of func-
tion evaluations, give information on the shape of the op-
timized landscape and estimate effects and interactions be-
tween parameters.

Combinatorial optimization problems arise in many real-
world settings. Examples for expensive combinatorial prob-
lems are scheduling or sequencing problems that depend on
time consuming simulations (e.g., [30]). The application of
surrogate-models to combinatorial problems is scarce. It is
desirable to extend successful approaches from continuous
optimization to combinatorial spaces.

The generalization of distance-based models to combina-
torial spaces was earlier proposed by Moraglio and Kat-
tan [20]. The core idea is to replace continuous distance mea-
sures (e.g., Euclidean) with distance (or similarity) measures
native to a combinatorial problems representation, e.g., Ham-
ming Distance (HD) or various edit distances. Relevant pre-
vious studies and similar work are reviewed in Sec. 2.

Moraglio and Kattan [20] use Radial Basis Function Net-
works (RBFN) in their studies, but also suggest to employ
more complex models like Kriging. Kriging may provide an
error estimate for each prediction, which can be exploited
to calculate the Expected Improvement (EI) of a candidate
solution. Thus, EGO can be applied to combinatorial opti-
mization problems.

The following topics will be addressed in this paper:
1. extension of Kriging to combinatorial problems,
2. determination of the optimization performance of a

Kriging-supported Genetic Algorithm (GA), and
3. investigation of the applicability of EGO to combina-

torial optimization problems.
Methods to deal with these topics are introduced in Sec. 3.

Numerical tests, which are performed on standard test prob-
lems, are described in Sec. 4. Experimental results are pre-
sented in Sec. 5 and discussed in Sec. 6. Finally, Sec. 7 gives
a summary and an outlook.

2. PREVIOUS RESEARCH

2.1 Surrogate Models in Optimization
Generally speaking, a surrogate model M̂ is a (coarse

grained or cheap) model that replaces a (fine grained or ex-



pensive) modelM with higher complexity. The reader may
consider a Computational Fluid Dynamics (CFD) model
that replaces a real-world problem. This CFD model itself
can be replaced by a simplified analytical model. In the for-
mer case, CFD models are considered as surrogates, whereas
in the latter, they are considered as fine grained models that
are replaced by a surrogate.

In this paper, however, the term surrogate is restricted to
data-driven models. They replace the simulation modelM,
which is given by a function f , see Algorithm 1. Here, it is
assumed that function evaluations clearly dominate the time
consumption (or cost), i.e., most time is spent in line two and
six of Algorithm 1. Stopping criteria can be a given budget
of function evaluations, a specified time limit or a fitness
value to be reached. The set Ap contains all underlying
parameters of Algorithm 1, e.g., number of initial solutions,
type and parameterization of the search strategy (line 5) or
the type of surrogate model.

Algorithm 1: Surrogate model-based optimization

Input: Function f , stopping criteria, parameter set Ap
Output: Best solution found y∗, final model M̂∗

1 Create initial solutions (randomly or with design of
experiment);

2 Evaluate solutions with f ;
3 while Stopping criteria not reached do

4 Build/update M̂;

5 Find best solution(s) predicted by M̂;
6 Evaluate solution(s) with f ;

7 end

Surrogate models can be Artificial Neural Networks, Lin-
ear Models, Kriging, Multivariate Adaptive Regression Splin-
es, Random Forests, and many more. Jones et al. [15] in-
troduced EGO, which uses the predicted mean and variance
provided by a Kriging surrogate to compute the Expected
Improvement (EI) of a candidate solution. Without loss of
generality, we will consider the case of minimization. Follow-
ing the notation in [10], we consider an expensive function

f and a related surrogate of f , denoted f̂ . Gaussian process
models allow the determination of the mean squared error
ŝ2(x) as described in [26]. Let y∗ denote the best found
function evaluation so far, Φ(·) and φ(·) denote the cumula-
tive distribution function and probability density function,
respectively. If ŝ(x) > 0, then the expected improvement
can be determined as

EI(x) = (y∗ − ŷ(x))Φ

(
y∗ − ŷ(x)

ŝ(x)

)
+ ŝφ

(
y∗ − ŷ(x)

ŝ(x)

)
,

otherwise EI(x) = 0. EI determines how much improvement
can be expected from the candidate solution to be predicted.
Thus, EGO uses EI instead of the mean prediction to deter-
mine a promising candidate solution in line 5 of Algorithm 1.
Besides saving evaluations of the expensive function f , this
approach also provides an infill criterion (i.e., EI) that bal-
ances exploitation versus exploration. For a more detailed
summary on surrogate model-based numerical optimization
we refer to the overview by Jin et al. [13]. A statistical
framework for model-based optimization is provided by the
Sequential Parameter Optimization [3].

2.2 Surrogate Models in Combinatorial Opti-
mization

Combinatorial surrogate models are a relatively new re-
search topic [14]. Data-driven surrogate models were used in
combination with GA or Ant Colony Optimization (ACO),
however, mostly for optimization of continuous vectors, where
classical models are applicable. Methods like Estimation of
Distribution Algorithms or ACO can also be understood to
use models [32], e.g., the Bayesian network model in the
Bayesian Optimization Algorithm [23] or the pheromone
model in ACO.

Another branch of combinatorial surrogate-model appli-
cations comprehends solvers for specific problem represen-
tations and specific applications. Voutchkov et al. [30] op-
timize a welding sequence. To represent the combinatorial
problem, a signed permutation is used. The surrogate model
replaces an expensive Finite Element (FE) model by esti-
mating the influence of each individual element in the se-
quence, based on the observations made in previously tested
sequences. Their surrogate model uses not only the result-
ing fitness values. It also exploits intermediate results that
reflect impact of individual elements, depending on their po-
sition in the sequence. Exploiting such intermediate results
will give this model a clear advantage over the more simple,
fitness-value driven approaches. On the other hand, the ap-
plicability of this model is restricted to this specific setup
and cannot be transferred to other application areas.

Fonseca et al. [9] defined Similarity-Based Models (SBM)
as models that keep a memory of solutions and estimate
the performance of new samples by comparing them to that
memory. Fonseca et al. list Fitness Inheritance [29], Fitness
Imitation [18, 13] and k-Nearest Neighbor (k-NN) [2] as ex-
amples. They test a GA supported by a k-NN model on a
set of numerical, continuous test functions. Bernardino et
al. [5] perform similar tests with Artificial Immune Systems.
In both cases Hamming and Euclidean Distance are used as
measures of similarity, showing that this approach does not
depend on a specific problem representation. In this study,
we do not employ the SBM variants suggested by Fonseca
et al. [9], because the proposed models are not suited to pre-
dict a new optimum. For example, the k-NN model would
never predict that a candidate solution has better perfor-
mance than the best known solution. The k-NN model may
be useful in a model management algorithm [9, 5]. However,
it is not useful in a framework as outlined in Algorithm 1.

More suited towards our goal are the approaches of Li et
al. [19] and Moraglio and Kattan [20]. They use distance-
based models, which are able to predict promising, new so-
lutions. Section 2.3 will review related results. Also, we
introduce a model similar to k-NN but more suited to the
given purpose in Sec. 3.2.

2.3 Applying Continuous Surrogates in Combi-
natorial Search Spaces

Li et al. [19] proposed RBFN models for optimization in
non-Euclidean spaces by replacing the employed distance
measure. Their RBFN models were applied to mixed-integer
problems, using a mixed integer evolution strategy. Another
approach to a mixed problem is taken by Hutter [12], who
describes a Kriging model based on a weighted Hamming
distance to model categorical variables for algorithm tuning.
In a very similar way, Moraglio and Kattan [20] suggested a



generalization of distance-based models from continuous to
combinatorial spaces.

The core idea is to employ distance measures, which are
inherent to the combinatorial problem representation (e.g.,
Edit Distance). Such problem representations can be binary
strings (e.g., binary knapsack problem, NK-Landscapes) per-
mutations (e.g., assignment and scheduling problems) trees
(e.g., symbolic regression) or any non-standard combinato-
rial problem representation.

Moraglio and Kattan [20] demonstrated this with a RBFN
adapted to arbitrary distance measures to solve instances
of NK-Landscapes (NKL). This RBFN-based approach has
also been applied to the Quadratic Assignment Problem
(QAP) [22], package-deal negotiation [8] and tree-based prob-
lems from Genetic Programming (GP) [21]. GP has also
been coupled with the RBFN-based approach to evolve bet-
ter discrete surrogate models [16]. All those works employ
some form of RBFN based on arbitrary distance measures,
thus adapted to combinatorial spaces. As Moraglio and Kat-
tan [20] indicate, this can also be done with other models,
e.g., with Kriging.

The key issue is to replace the Euclidean (RBFN) or per-
variable (Kriging) distances by distance measures, which di-
rectly work for the inherent problem representation. De-
pending on the model type under consideration, other changes
may become necessary. For instance, in the context of arbi-
trary distance measures, there is no guarantee that a given
distance matrix will be invertible, as required by RBFN.
Therefore, Moraglio and Kattan [20] suggested to replace
the matrix inversion with the pseudoinverse. This issue is
revisited in the following description of the Kriging model
employed in the herein described work.

3. METHODS

3.1 Kriging for Combinatorial Problems
Kriging is a method for interpolation and regression based

on Gaussian process modeling. The following notation is
adopted from Forrester et al. [10]. Given a set of n solutions

X = {x(i)}i=1...n in a k-dimensional continuous search space

with observations y = {y(i)}i=1...n, Kriging is a method
to find an expression for a predicted value at an unknown
point by interpreting the observed responses y as if they
are realizations of a stochastic process. The following set of
random vectors Y = {Y (x(i))}i=1...n is used to define this
stochastic process. The random variables Y (·) are correlated
as follows [10]:

cor
[
Y (x(i)), Y (x(l))

]
= exp

(
−

k∑
j=1

θj |x(i)
j − x

(l)
j |

pj

)
. (1)

Equation (1) defines a non-Euclidean distance measure, which
uses a weighted per-element distance. The weights θj and
the shape parameter pj have to be estimated. The matrix
that collects correlations of all pairs {(i, l)} is called the cor-
relation matrix Ψ. It is used in the Kriging predictor

ŷ(x) = µ̂+ψTΨ−1(y − 1µ̂), (2)

where ŷ(x) is the predicted function value of a new sample
x, µ̂ is the maximum likelihood estimate of the mean and
ψ is the vector of correlations between training samples X
and the new sample x. The error of the prediction can be
estimated with
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Figure 1: Negative concentrated log-likelihood plot-
ted versus log(θ). Likelihood landscape for a Kriging
model, based on 200 randomly sampled solutions of
a N = 10, K = 2 NKL-Landscape. Standard matrix
inversion is compared to pseudoinverse. Values not
plotted in the left plot represent (close to) singu-
lar correlation matrices. Both plots show a (local)
optimum at log(θ) ≈ 0.24.

ŝ2(x) = σ̂2(1−ψTΨ−1ψT ), (3)

where σ̂2 is a model parameter to be estimated. The (usually
small) contribution of error due to estimation of µ̂ is omitted.

The width parameter θ determines how far the influence
of each sample point x spreads. If the correlation struc-
ture differs in different directions of the search space, fitting
different θj values for each direction of the search space is
desirable. This is the so-called anisotropic case. Isotropic
models are better suited for combinatorial search spaces,
because direction is a vague concept for combinatorial op-
timization problems. Therefore, Eq. (1) is transformed to
become isotropic, i.e., with scalar θ and p, i.e.:

cor
[
Y (x(i)), Y (x(l))

]
= exp(−θd(x(i),x(l))p), (4)

where d(·) can be any distance measure for the given prob-
lem representation. Now, the samples x are not restricted
to continuous values and may consist of various types, e.g.,
binary strings, permutations, or trees.

Maximum Likelihood Estimation (MLE), which compre-
hends an optimization procedure, is used to determine the
model parameters, i.e., θ, p, σ̂ and µ̂. MLE requires a matrix
inversion (also later in the prediction step, see (2)), which
can usually be performed directly or via Cholesky decompo-
sition. A non degenerated or positive-semidefinite matrix is
required for this inversion. Moraglio and Kattan [20] state
that it can not be guaranteed that such matrices will still
be invertible if they are based on an arbitrary distance mea-
sure. Therefore, they replace the matrix inversion in their
RBFN model with the pseudoinverse.

In case of Kriging, this can introduce a new global opti-
mum into the MLE landscape. Selecting θ based on such
an optimum may lead to a poor prediction at new sample
points. This situation is exemplified in Fig. 1. Here, a Krig-
ing model is built, based on 200 random samples from a NK-
Landscape (N = 10, K = 2), see Sec. 4.1. The Hamming
distance (HD) metric is employed as a distance measure.
The likelihood is calculated once with standard matrix in-
version, once with the pseudoinverse. The figure shows the
dependency of the estimated likelihood value on the θ pa-
rameter. Clearly, when θ becomes too small, the correlation
matrix will become close to singular. Hence, no values are
plotted for this region (Fig. 1, left). In practice, a penalty
function is used to handle this problem. The pseudoinverse
generates extremely good likelihood values in this region.



While both plots have an optimum at approx. 0.24, it is a
local one when using pseudoinverse. Thus, it is disregarded
during MLE with pseudoinverse. Instead, very small θ val-
ues would be chosen. As mentioned earlier, θ will control
how far the influence of each observation will spread in the
search space. With very small θ, all observations affect the
whole search space equally. Here, this leads to very bad pre-
dictive performance. On the other hand, the local optimum

(θ ≈ 0.24) results in a surrogate model M̂ that is highly
correlated with the expensive model M at unseen sample
points. This example shows that standard matrix inversion
works well with HD, while pseudoinverse does not. This is
not surprising, as the HD metric was successfully applied in
related contexts (e.g., [24, 25]).

Of course, there may be distance measures where the sit-
uation is more complicated. If a distance measure does not
yield valid (i.e., non-degenerate or even positive-semidefinite)
correlation matrices, two solutions are possible. First, MLE
may be replaced with a cross-validation approach. This may
increase the computational burden. Second, the correlation
function (4) or the distance measure may be adapted to
guarantee that the correlation matrix is valid. As a first
step, this paper only relies on the assumption that all em-
ployed distance measures are valid.

3.2 A Linear Model
As a simple base-line comparison, a Linear, distance-based

Model (LM) is introduced. To predict the quality of a new
solution, all existing samples are sorted according to their
distance to the new sample. The average of the observations
at the smallest and second smallest distance can be used
to estimate a linear trend, i.e., slope and intercept. The
intercept is the prediction for the utility value of the new
sample. This approach may be compared to a k-NN model
with k = 2, with the difference that the prediction is not
based on the mean of the two nearest neighbors, but rather
on a linear trend estimated from these. Thus, it may suggest
new optimal solutions, which k-NN can not.

3.3 Radial Basis Function Network
The employed RBFN model is based on the description

by Moraglio and Kattan [20], with the predictor,

ŷ(x) = w0 +
K∑
i=1

wi exp
(
−βd(x, c(i))2

)
where K is the number of centers c (here: all samples in X
are centers), d(·) is an arbitrary distance measure and w0 is
the mean of all observations. The weights w are determined
with the pseudoinverse, w = G+(y−1w0). Here, the matrix

G has the elements gij = exp
(
−βd(x(i),x(j))2

)
. Further-

more, D denotes the maximum distance and β = 1/2D2.
The RBFN will also be used in an EGO framework (hence
called EGOR). To that end, we can get a rough error esti-
mate in a similar way as done with Kriging, i.e., from Eq. (3),
where Ψ is replaced by G and σ̂ is replaced by the standard
deviation of the observations.

4. EXPERIMENTAL SETUP

4.1 Test Problems
The experiments in this paper are based on those in two

previous studies [20, 22]. All experiments are performed

using the free software environment for statistical computa-
tion, R. Function evaluations are assumed to be expensive,
dominating the cost of the optimization process. This as-
sumption is made to justify the large computational over-
head of surrogate model training and exploitation. Hence,
strictly limited budgets are imposed during the experiments.

NK-Landscapes (NKL), as proposed by Kauffman [17],
are fitness landscapes based on binary strings. The fitness
of a string is the sum of fitness contributions of N string
elements, each impacted by K other elements. The fitness
of a binary string is therefore given by (cf. [1])

f(x) =
1

N

N∑
i=1

gi(xi;xi1, ...xiK), (5)

where xi is the i-th bit of the string x, and xi1, ...xiK are
the bits that influence the contribution of xi. A cyclic or-
der is used, i.e., x1 follows xN . For each string element,
a function gi assigns a real-valued weight to each possible
combination of the element and its neighbors, typically sam-
pled uniformly from [0; 1]. This results into N lookup tables

of 2(K+1) values. In this paper, the K neighbors that im-
pact the contribution of the i-th element xi are given by the
sequence (xi+1, ..., xi+K).

The Quadratic Assignment Problem (QAP) [6] de-
scribes a permutation problem, where N facilities have to
be assigned to N locations. Assignment cost is minimized,
based on flow between facilities (a) and distance between lo-
cations (b). The optimization problem is to find an optimal
permutation π of length N from the set of all permutations
ΠN , that is

min
π∈ΠN

N∑
i=1

N∑
j=1

aijbπ(i),π(j). (6)

The instances nug30, tho30 and kra32 from the QAP Li-
brary (QAPLIB) [7] were chosen in [22]. Here, instance
(nug12) was added to incorporate smaller search spaces.

Unimodal (UNI) problems were suggested by Moraglio
et al. [22] as simple and transparent test cases. Here, the
fitness of a permutation is its distance to the fixed reference
permutation π = 1, 2, 3, ..., 30. Both HD and Swap Dis-
tance (SD) are used, each forming a different UNI instance
(unih30, unis30).

Because the look-up tables are randomly generated, our
results differ from previous results presented in [20, 22].
Also, the exact distribution of the K neighbors may differ.
The UNI problems depend on the chosen reference permuta-
tion. The QAP instances should be identical, thus yielding
the most comparable results. All problems are of a low or
moderate sizs, e.g., the permutations are no longer than 32
elements. Of course, larger problems may be handled as
well. Still, larger problems would require much more data
to build reasonable models. In practice, even small problem
instances may be hard to solve when evaluation becomes
expensive, e.g., Voutchkov et al. [30] only consider signed
permutations of length six. Hence, we chose rather small or
medium sized problem instances.

4.2 Surrogate Models
Three surrogate models are employed in the experiments,

RBFN, Kriging, and LM. No tuning of model parameters is
performed. EGO will be performed with Kriging or RBFN
(EGOR). The Kriging implementation is based on the origi-



nal Matlab code by Forrester et al. [10], as reimplemented in
the SPOT R package. It is adapted to combinatorial spaces as
described in Sec. 3.1. The parameter p is fixed at a value of
one, all others are estimated with MLE. RBFN and LM are
implemented in R, according to their description in Sec. 3.2
and 3.3.

4.3 Optimization Algorithms
Two model-free optimization algorithms are employed,

Random Search (RS) and GA. RS will only be employed
to optimize the test functions, namely QAP, NKL, and UNI.
This provides a reference performance which should be beaten
by any more sophisticated algorithm. The GA will be used
on all problems and with all surrogate models.

In all cases, the crossover rate is 0.5, the mutation rate 1
N

.
Tournament selection is performed with a tournament size
of two and a probability 0.9. For NKL, bitwise mutation and
uniform crossover are used. In case of the permutation prob-
lems (UNI, QAP) interchange mutation (i.e., interchange of
arbitrary elements) and cycle crossover are chosen.

When the NKL instances are optimized directly, the popu-
lation size is N . When a NKL surrogate model is optimized,
population size is 10N . For QAP and UNI, the population
size is set to 10 (direct) and 20 (surrogate), respectively. The
number of function evaluations for NKL is N2 (direct) and
100N2 (surrogate), respectively, and the number of func-
tion evaluations for UNI and QAP is set to 100 (direct) and
10, 000 (surrogate), respectively.

The GA is combined with five different model-based ap-
proaches (RBFN, LM, Kriging, EGO with Kriging and EGOR
with RBFN). For RBFN, LM and Kriging, the exploration
strategy used by Moraglio and Kattan [20] is employed: a
random solution is selected for evaluation, if the model does
not predict a value better than the best known solution. The
EGO variants do not need this explicit exploitation mech-
anism, because they use a natural way to balance between
exploration and exploitation.

To enable a more coherent experimental setup, the use of
a memetic GA with a two-opt step to optimize the surro-
gate model for QAP and UNI (cf. [22]) is omitted in our
setup. Preliminary experiments indicated that additional
local search does not improve the results significantly. This
may be due to the accuracy of the surrogate models. Since
their prediction is not perfectly exact, exhaustive local search
may be unprofitable. Also note, that duplicates are avoided,
with respect to the restricted budgets.

Of course, the rather simple GA is a potentially weak com-
petitor, the RS even more so. Future work may replace the
model-free GA with a more potent, state-of-the-art competi-
tor. Still, a state-of-the-art approach may be hard to find
for the case of strictly limited budgets.

4.4 Distance Measures
Several distance measures are discussed in the literature.

Schiavinotto and Stützle [27] compared several distance met-
rics for search landscape analysis, concerning permutations.
A different set is reviewed by Sevaux et al. [28] for their use-
fulness in a diversification strategy of a memetic algorithm.
As shown for QAP, even phenotype information can be used
for calculating distances [4]. For the purpose of measuring
distance between binary strings or permutations, we con-
sider the following distance measures.

Hamming Distance (HD) The number of unequal ele-
ments between two strings x and y, i.e.,

HD(x,y) =

n∑
i=1

ai where ai =

{
0 if xi = yi,
1 otherwise

(7)

The Hamming distance fulfills the conditions of a metric on
the vector space of the words of length n. It can quickly de-
termined, especially for binary strings and is therefore used
in the NKL experiments. It is expected that the HD works
well when modeling NKL data, as it very much resembles
the distance measure usually used in RBFN or Kriging for
continuous problems. In detail,

∑n
i=1 |xi − yi| yields values

identical to Eq. (7) if the two binary strings x and y are
interpreted as numerical vectors containing zeros or ones.
Equation (7) can be used to measure the distance between
arbitrary strings of equal length. Hence, it can also be ap-
plied to permutations. There, two other distance measures
are employed in the experiments.

Swap Distance (SD) A swap operation is the inter-
change in position of two adjacent elements in a permuta-
tion. SD counts the minimal number of swaps necessary
to transform one permutation into another. For the calcu-
lation of this measure, we use the algorithm as described
by Schiavinotto and Stützle [27]. Moraglio et al. [22] re-
port that SD performed poorly. This may be due to the
fact, that SD only concerns adjacent elements, while inter-
changing two arbitrary elements may be a more reasonable
smallest step. This gave the inspiration to add an additional
distance measure to our portfolio.

Interchange Distance (ID) An interchange operation
is the interchange in position of two arbitrary elements in a
permutation. ID counts the minimal number of interchanges
required to transform one permutation into another. Schi-
avinotto and Stützle [27] provide an algorithm to calculate
this measure, which is employed in this work. They also
performed experiments to measure correlation between dif-
ferent distance measures and report a high correlation be-
tween HD and ID, whereas the correlations between HD and
SD, as well as between SD and ID are low. Based on this
information, ID is an interesting candidate in our portfolio.
It has to be noted that HD has the lowest computational
complexity. In case of equal performance, HD should be
selected.

5. RESULTS
Experimental results are visualized by boxplots in Fig. 2, 4

and 5. The inner box indicates the 25 and 75 % quartiles
and the bold line is the median. Circles are outliers, and
the outmost lines specify the range of values exluding these
outliers. For the two instances with K = 2, EGO finds
the optimum in all of the 20 runs. EGOR (with RBFN)
performs similarly well, but does not find the optimum in
every run on the K = 2, N = 25 instance. In General, EGO
outperforms EGOR. For N = 25, K = 5, only EGO and
EGOR ever solve the problem, but not in all runs (EGO:
7 of 20, EGOR: 1 of 20). EGO is clearly best on all NKL
instances but the instance with N = 10, K = 5. To analyze
this behavior further, the runs with N = 10, K = 5 are
extended to 300 function evaluations. The corresponding
results are visualized in Fig. 3. Here, no decision can be
made for small budgets. EGO performs better for budgets
> 100. The model-free GA is clearly outperformed on the
NKL instances by RBFN and EGO. LM fails to outperform
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Figure 2: Boxplot of NKL results. All modeling ap-
proaches employ HD only. Larger values are better.

the basic RS for the two larger NKL instances. Optimization
with Kriging mean predictions often performs worse than
RBFN or LM, with the exception of the N = 25, K = 2
NKL instance.

EGO is best on all QAP instances, but only with HD.
Other distance measures may or may not lead to perfor-
mance that is worse than the model-free GA, which often
ranks second best to EGO. On the QAP instances, SD is
sometimes better than ID, sometimes vice-versa.

For unis30 the GA outperforms only RS and LM, as
well as Kriging with HD. For unih30, GA is outperformed
by EGO, EGOR and RBFN with HD. HD seems to work
best on all tested permutation problems, with exception of
unis30. Optimization with Kriging mean predictions per-
forms better than RBFN for unis30. With EI, on the other
hand, Kriging (EGO) performs nearly always better than
RBFN (EGOR).

Overall, EGO clearly performs best, often (but not al-
ways) followed by RBFN or EGOR. Of the model-based
approaches without EI, RBFN is best, although it is out-
performed by the model-free GA several times. None of the
permutation problems are ever solved with the given bud-
gets, although EGO comes very close for unis30 and nug12.

6. DISCUSSION
The surrogate model-based approaches work very well for

NKL with K = 2. Results in general were much better than
for the permutation problem experiments. Two reasons for
this excellent performance can be given. First, the search
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Figure 3: Empirical runtime distribution plot for
the NKL instance (N = 10,K = 5). Y -axis shows the
fraction of the 20 runs which reached the optimum.

space of the tested NKL instances is much smaller than
that of the permutation problems. E.g., the largest NKL
(n = 25) has 2n ≈ 3.36×107 possible combinations, whereas
the smallest QAP problem (n=12) has n! ≈ 4.79×108. Sec-
ond, the choice of distance measure (HD) is not only natural
to this problem, but is a measure which is similar to the dis-
tance measures used in continuous domains.

Relative to RS, performance of most algorithms decreased
with larger K. This has to be expected to some extent, since
such landscapes are clearly more rugged and difficult. That
is, the larger K is, the more fitness contributions change
when one single bit is flipped. Clearly, this does not only
make the optimization more difficult, but also the model-
ing, since the correlation between neighboring solutions de-
creases.

For N = 10 and K = 5, the results showed large variances
and the worst EGO performance. Additionally, the GA per-
formance was not significantly better than RS. This can be
attributed to the more rugged fitness landscape. The high
variance in the performance of all approaches also suggests
that more function values are required, which can be sup-
ported by earlier work on NKL. The dynamic programming
algorithm proposed by Weinberger [31] solves the NKL in
O(2KN) steps. That is, it needs 40 (N = 10,K = 2), 320
(N = 10,K = 5), 100 (N = 25,K = 2) or 800 (N = 25,K =
5) steps. As can be seen, all but the N = 10 and K = 5 in-
stance received budgets rather close to these numbers, which
may be a reason for the observed performance. Longer runs
with 300 evaluations revealed that after sufficient evalua-
tions, EGO would outperform the other approaches and re-
liably solve the instance.

For the permutation problems, EGO is the best working
optimization approach, and HD the most suitable distance
measure. It is interesting to observe that SD sometimes
outperforms ID, although ID was reported to have larger
correlation with HD, which worked best. This result should
be investigated further. In contrast to results from Moraglio
et al. [22], the model-free GA often outperforms the RBFN-
supported GA on the permutation problems. The perfor-
mance of the RBFN model seems to be very similar to the
performance reported earlier. Thus, the difference may be
in the choice of settings for the basic, model-free GA, which
performs better than reported in the earlier study. E.g., the
choice of using tournament over truncation selection may be
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Figure 4: Boxplot of QAP results. Smaller values
are better.

the reason. Or else, there may be differences due to the mu-
tation operator, as interchange mutation was used instead
of swap mutation. This result stresses the need for a future
study on tuning of the applied approaches.

A further difference to earlier results [22] is the perfor-
mance observed for the unimodal functions. Here, the best
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Figure 5: Boxplot of results for the artificial, uni-
modal test instances. Smaller values are better.

working distance measure is always that which is used in
the instance itself. That is, HD works best with unih30

and SD works best with unis30. The bad overall perfor-
mance on unih30 may be caused by the larger number of
non-unique fitness values. Our results indicate that HD is
clearly the best metric for the given problems. But the re-
sults on unis30 show that the choice of distance measure
can be affected by the problem type. This warrants further
research with problem instances of larger variety. For other
permutation problems, completely different measures may
be preferable.

7. SUMMARY AND OUTLOOK
We demonstrated that EGO can be successfully applied to

combinatorial optimization problems and that this Kriging-
based approach was able to outperform a model-free GA.
However, EGO does not make approaches like GA superflu-
ous, because GAs are very useful for the proposed extension
of EGO to combinatorial spaces. Searching for the solution
with largest EI takes usually place in a multi-modal land-
scape. EI depends on the variance estimate which is zero
at known samples. In between samples, this will often cre-
ate local optima. Finding the global optimum solution of
the EI landscape requires a surrogate-optimizer that is able
to escape such local optima. Stochastic, population-based
methods like GA are most suitable for this purpose.

Besides EGO and GA, model-based searches with Krig-
ing (without EI), RBFN and LM were included in the com-
parison. All model-based approaches were outperformed by
EGO, in some cases even by the model-free GA. It was also
observed that RBFN does hold on very well to the basic
Kriging model, as long as they are not used in EGO. Krig-
ing outperformed the more simple RBFN when it was em-
ployed in EGO. The exploration/exploitation balancing of
EGO in combination with the more powerful Kriging pre-
dictor and a well chosen distance measure seem to make the
difference. As other model types do not provide an error es-
timate, heuristics may be examined in future research. E.g.,



variance estimated from distances to known samples, or by
using some form of cross-validation.

Furthermore, the permutation distance measures were re-
vealed to have a strong impact on the results. With one ex-
ception, Hamming Distance worked best for all problem in-
stances. For other problems, the situation may be different.
At the same time, the number of possible distance measures
is much larger than the set used in this work. This issue will
again occur, when tree-based representations or more exotic
representations are concerned. Hence, the question of choos-
ing a distance measure will remain an important issue. Dis-
tance measures were previously used for several tasks, e.g.,
diversity preservation in GAs or fitness landscape analysis.
On the other hand, considering expensive problems yields
different limitations than those encountered in earlier stud-
ies. For example, measures previously disregarded because
of their complexity [28] may be of use in contexts where over-
all time consumption is dominated by the expensive target
function. The interaction of distance measure, the corre-
lation functions, and other parameters of the model are of
interest for further investigation. The following topics will
also be subject of our future research:
• performing a detailed study on parameter tuning of all

compared approaches, to guarantee a fair comparison
and understanding interactions of parameters
• implementing Co-Kriging [11] for combinatorial spaces,

to include cheaply available data into the optimization
process.
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