
Prediction of neural network performance by phenotypic
modeling

Alexander Hagg
Bonn-Rhein-Sieg University of Applied Sciences

Sankt Augustin, Germany
alexander.hagg@h-brs.de

Martin Zaefferer
TH Köln, Institute for Data Science, Engineering, and

Analytics
Gummersbach, Germany

martin.zaefferer@th-koeln.de

Jörg Stork
TH Köln, Institute for Data Science, Engineering, and

Analytics
Gummersbach, Germany
joerg.stork@th-koeln.de

Adam Gaier
Bonn-Rhein-Sieg University of Applied Sciences

Sankt Augustin, Germany
Inria / CNRS / Université de Lorraine

Nancy, France

ABSTRACT
Surrogate models are used to reduce the burden of expensive-to-
evaluate objective functions in optimization. By creating models
which map genomes to objective values, these models can estimate
the performance of unknown inputs, and so be used in place of
expensive objective functions. Evolutionary techniques such as ge-
netic programming or neuroevolution commonly alter the structure
of the genome itself. A lack of consistency in the genotype is a fatal
blow to data-driven modeling techniques: interpolation between
points is impossible without a common input space. However, while
the dimensionality of genotypes may differ across individuals, in
many domains, such as controllers or classifiers, the dimensionality
of the input and output remains constant. In this work we leverage
this insight to embed differing neural networks into the same input
space. To judge the difference between the behavior of two neural
networks, we give them both the same input sequence, and examine
the difference in output. This difference, the phenotypic distance,
can then be used to situate these networks into a common input
space, allowing us to produce surrogate models which can predict
the performance of neural networks regardless of topology. In a
robotic navigation task, we show that models trained using this
phenotypic embedding perform as well or better as those trained on
the weight values of a fixed topology neural network. We establish
such phenotypic surrogate models as a promising and flexible ap-
proach which enables surrogate modeling even for representations
that undergo structural changes.

CCS CONCEPTS
• Computing methodologies→Kernel methods;Neural net-
works; Genetic algorithms; Machine learning;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic
© 2019 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-6748-6/19/07. . . $15.00
https://doi.org/10.1145/3319619.3326815

KEYWORDS
Surrogate Models, Neural Networks, Distance Metrics

ACM Reference Format:
Alexander Hagg, Martin Zaefferer, Jörg Stork, and Adam Gaier. 2019. Predic-
tion of neural network performance by phenotypic modeling. In Genetic and
Evolutionary Computation Conference Companion (GECCO ’19 Companion),
July 13–17, 2019, Prague, Czech Republic. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3319619.3326815

1 INTRODUCTION
Optimization of real world engineering problems is a demanding
task. Oftentimes, expensive simulations are needed to determine
the quality of a solution. For example, to determine whether a car
model produces low wind resistance, a numerical simulation of
the airflow needs to be performed, which can take many hours
or even days. In robotics control, we need to run physics-enabled
simulations or run real world experiments. Iterative optimization
requires many of these evaluations to reach a satisfactory solution.

One of the most helpful techniques is to replace most evaluations
with the predictions of a surrogate model [11, 12]. The surrogate
model is an efficient computational model that is trained with exam-
ples from the real objective function, but takes orders of magnitude
less time to produce a prediction of the objective function’s value
for a certain candidate solution. Commonly used models such as
Gaussian processes (also known as Kriging) or support vector ma-
chines [11, 22] are based on the similarity of candidate solutions.
Similarity-based surrogate models have been used in such var-
ied domains as: shape optimization in fluid dynamics [3, 19], the
discovery of new drugs [5], the placement of hospital trauma cen-
ters [29], and even to the optimization of other machine learning
methods [23, 27]. To produce a prediction these models interpolate
based on the distance of a candidate solution to known examples.
They assume that the objective function is smooth: the closer a
candidate is to a known example, the closer its function value will
be to that of the example.

A prerequisite for similarity-based surrogate models is that a
distance metric is defined for the encoding of a solution. Surrogate
models are therefore usually applied to solution representations
that encode a fixed number of parameters. Recently, more complex

ar
X

iv
:1

90
7.

07
07

5v
1

 [
cs

.N
E

]
 1

6
Ju

l 2
01

9

https://doi.org/10.1145/3319619.3326815
https://doi.org/10.1145/3319619.3326815

GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic Hagg, Zaefferer, Stork, Gaier

encodings have been developed that do not have a constant input
space. Prime examples of such encodings are compositional pattern
producing networks (CPPN) [24], that encode complex shapes or
behaviors indirectly, neuroevolution [25], in which the topology
of neural networks can be evolved, or genetic programming [14],
which evolves the topology of graphs or trees representing com-
puter code ormathematical equations. The non-uniform input space
of these encodings frustrates typical ways of measuring distance
as the dimensionality and even the meaning of these dimensions
varies from one individual to the next (see Figure 1).

different topologies

|| , ||

genotypes cannot
be compared

Figure 1: Two networks with different topologies cannot be
compared based on their genotypes.

A second problem arises when the quality of a solution depends
on interaction with its environment. This behavior might vary
greatly even if the parameterization of the encoding is changed
only a small amount. If we would train a similarity-based model
to predict the quality of such an encoding, a parameterization that
is close to a training example would be assigned a similar fitness,
although its actual fitness might be very different.

To enable surrogate-assisted optimization of these kinds of en-
codings, we investigate the idea of measuring distances not of the
encoding, the genotype, but rather of the expression of the encod-
ing, the phenotype. The phenotype may include morphological as
well as behavioral aspects [4], and so can give us more information
about how similar two individual solutions are than the genotype
alone [26]. Our main insights are that (1) regardless of a network’s
internal composition, the size of the output in relation to the input
is constant, and (2) the relation between input and output describes
the behavior, and so is a useful proxy for similarity between net-
works. To measure the difference in the behavior of two networks
we can give them the same input sequence and measure the differ-
ence in the output sequence using a standard metric like Euclidean
distance.

By using randomly selected, but fixed input sequences, we do
not have to run an actual simulation to get the output sequence.
Instead, we sample the input/output relation and use the ad hoc
difference in the output sequences of two individuals to measure
their distance. This distance measure can now be used to build a
similarity-based surrogate model.

In this work, we evaluate whether we can model the phenotype
of neural networks using a phenotypic distance metric and whether
the models are competitive to those using a genotypic distance
metric, which is based purely on the weights of the neural network.
We qualify the results with a more in-depth analysis of the com-
plexity of the phenotypic modeling problem, which shows that the

intrinsic dimensionality of the phenotypic data is much lower than
that of the genotypic data.

2 RELATEDWORK
Similar to phenotypic distances, semantic distances are used in
Genetic Programming (GP). These semantic distances can be de-
fined as a distance of the outputs of GP individuals, determined
with the same measure that is used in the fitness function [16] .
Semantic distances are applicable where the fitness function can
be computed as a distance between the optimal target vector and
the candidate outputs, such as in supervised classification or sym-
bolic regression. In these cases, the semantic distance has a fitness
distance correlation of exactly one and can be utilized to construct
specific mutation and crossover operators, rendering the problem
uni-modal.

Phenotypic distances have also been employed in a surrogate
modeling context for GP. Hildebrandt and Branke [10] suggested
a phenotypic distance for dynamic job shop scheduling problems.
Their definition of phenotypic distance compares individuals ac-
cording to the results of evolved dispatching rules on a small set of
test situations. Unlike semantic distances, their phenotypic distance
is not identical to the measure used in the actual fitness function.
This is necessary in the context of surrogate modeling for expensive
fitness functions. If the fitness function is expensive to compute, it
would also be expensive to use the same evaluation to compute a
distance between candidates. Such an approach would render the
surrogate model itself expensive.

Zaefferer et al. [31] compare different genotypic and phenotypic
distances for surrogate models in symbolic regression. Here, the un-
derlying measure is not identical to that used in the fitness function.
Specifically, the fitness function considers fixed coefficients in the
symbolic expression. These coefficients are otherwise optimized
during an actual fitness evaluation, which may become costly. In
both of these cases, the phenotypic distance was reported to yield
better results than genotypic distances [10, 31].

Doncieux et al. [6] discuss the use of behavioral similarity in
evolutionary robotics to employ a diversity measure for a multiob-
jective optimization approach. They compare different distances
based on the states, outputs and trajectories given concrete robot
tasks. They outline that using these behavioral distance as second
objective in multi-objective optimization is able to enhance the
overall performance.

A first approach utilizing a surrogate model for evolving neu-
ral networks given complex control tasks was discussed by Gaier
et al [9]. An evolutionary algorithm was combined with a surro-
gate model based on a hereditary distance, which is defined in the
context of NeuroEvolution of Augmenting Topologies (NEAT) as
compatibility distance. The approach is able to significantly improve
the evaluation efficiency. Stork et al. [26] also investigated surrogate
models for neuroevolution. They examined simple classification
tasks and compared a phenotypic distance measure to genotypic
distances in surrogate-assisted Cartesian genetic programming. The
use of a phenotypic distance was shown to be very promising in
terms of evaluation efficiency.

In this work we build on the ideas about using the output of
network representations, and investigate whether sampling the

Prediction of neural network performance by phenotypic modeling GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic

phenotypes allows us to measure distances between networks. We
evaluate whether we can use this distance metric to model the
behavior of neural networks in a robot control task and predict
their fitness.

3 METHODS
3.1 Kriging
To perform interpolation or regression on a given data set, Kriging
models assume that the underlying data is sampled from a Gaussian
process. For an in-depth introduction to Kriging and its application
in model-based optimization, we refer to Forrester et al. [7]. We
give only a rough overview, focusing on the issues relevant to this
work.

Here, the training data of the model is denoted as a set of n
solutions X = {x(i)}i=1...n in a k-dimensional search space. The
corresponding n observations are denoted with y = {y(i)}i=1...n .
For an unknown point in our search space, x∗, Kriging intends to
estimate the unknown function value ŷ(x∗). In its core, the model
assumes that the observations at each location x are correlated via
a kernel function. In this paper, we consider kernel functions of the
following type:

k(x, x′) = exp
(
−θd(x, x′)

)
. (1)

This essentially expresses the correlation of two samples x a x’,
based on their distance d(x, x′), and a kernel parameter θ ∈ R+.
Kernel parameters are usually determined by Maximum Likelihood
Estimation (MLE), that is, they are chosen such that the data has
the maximum likelihood under the resulting model. MLE usually
involves a numerical optimization procedure [7]. The distance mea-
sure d(x, x′) can potentially be any measure, though not all ensure
that the kernel is positive semi-definite, a common requirement [7].
In this work, we use the Manhattan distance, which is less affected
by issues related to high-dimensional data [1], defined as:

dMan(x, x′) =
∑

|xi − x ′i | (2)
Rather than a single parameter θ , a different θ can be used for

each dimension i of the input samples, enabling the model to esti-
mate the influence of each individual dimension on the observed
values. However, in the interest of simplicity and computational
efficiency we opt for an isotropic kernel with a single θ .

Once the pairwise correlations between all training samples are
collected in a matrix K, the Kriging predictor can be specified with

ŷ(x∗) = µ̂ + kTK−1(y − 1µ̂), (3)

where µ̂ is another model parameter (estimated by MLE), k is the
vector of correlations between training samples X and the new
sample x∗, and 1 is a vector of ones. The error or uncertainty of the
prediction can be estimated with

ŝ2(x) = σ̂ 2(1 − kTK−1kT), (4)
where σ̂ 2 is a further model parameter to be estimated by MLE.

3.2 Genotypic vs Phenotypic Distance
The networks that we investigate in this work are results of op-
timization runs with fixed network topologies. This allows us to
evaluate and compare the efficiency of models based on both geno-
typic and phenotypic distance measures. To define a genotypic

distance we consider the vector of weights of the neural networks.
Let ®wx = {w1,w2, ...,w j } be the weight vector of length j associ-
ated with a solution x, then we can calculate the genotypic distance
by the related weights of two samples: d(®w, ®w ′).

The disadvantage of genotypic distance measures is their lack
of applicability when changing topologies are considered. If in
these cases no clear concept to compare genotypic changes exist
(as applied in [9]), the genotypic distance comparison is difficult,
misleading and even destructive [6, 26]. The ability to compare
non-uniform topologies makes phenotypic distances a valuable
technique, especially in cases when typical distances are not a
viable option.

The phenotype displays the behavior of a neural network given
a certain set of inputs. For example, in the case of neural networks
used as controllers for robots the phenotype can be defined as
the control commands that are issued in response to different
sensor inputs. We define a phenotypic distance as follows: Let
®s = {s1, s2, ..., sk } be the vector of inputs with length k , then
®ox = {o1,o2, ...,ok×z } is the associated processed output vector,
or phenotype, for a neural network x with length k × z, where z is
the number of neural network output neurons. The phenotypic dis-
tance is employed by calculating the difference in the outputs of two
samples: d(®o, ®o′). Figure 2 illustrates the sampling of phenotypes
and Figure 3 shows a comparison of both distances.

The phenotypic distance is always task sensitive, i.e., a compari-
son of two samples x and x′ requires the definition of an adequate
input vector ®s . In the context of model-based optimization, this
input vector needs to fulfill two requirements:

a) the input should be representative for the underlying task,
i.e., in case of robot control it should follow the given sensor
ranges and/or depict a trajectory of states present in the task.

b) the dimensionality of the phenotype needs to be considered,
the length of the input vector for generating the phenotypes
might significantly affect the modeling performance as well
as the computation time for querying the networks.

Given a carefully selected input vector, the phenotypic distance
should be able to provide a clear impression of how the behaviors
of two candidate networks compare to each other. A possible disad-
vantage of our definition of a phenotypic distance is that depending
on the underlying task, the real behavior cannot be defined by the
output of the neural network controller alone. For example, a robot
is further influenced by the structure of the environment and its
own body. Two robots with different controllers and phenotypes,
one that uses 4 legs for movement and the other that uses 3 legs,
might behave the same if the 4th leg is disabled due to damage
[6]. However, a representative set of samples of the input/output
relationship should be descriptive enough to capture the behavioral
differences and so allow the construction of surrogate models.

4 EVALUATION
4.1 Experimental Setup
The goal of our experiments is two-fold. Firstly, to determinewhether
we can learn reasonable surrogate models based on a diverse set of
phenotypic vectors. Secondly, to compare these results to a geno-
typic model. Our experiments are constructed as follows, we:

GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic Hagg, Zaefferer, Stork, Gaier

hidden
input output

weights-1 0 1
input 1

-1

0

1

in
p

u
t

2

k quasi-random
samples

comparison phd output

k * |output|

]k

]
]k

Figure 2: Sampling the phenotype to compare two individual
networks.

|| , ||

phenotypic distance

norm of two phenotypic
output vectors

|| , ||

weight distance

norm of two
weight vectors

Figure 3: Weight models are based on weight vectors for
fixed-topology networks. Phenotypic distance models are
based on fixed-length sampled phenotypic output vectors
for any-topology networks.We use the L1 norm (Manhattan
distance) for interpolative modeling.

(1) Run model-free optimization algorithms that optimize the
weights of fixed topology neural networks for robot control;

(2) Archive a selection of several hundred diverse neural net-
works from the results of these runs;

(3) Train different genotypic and phenotypic surrogate models
on a subset of these networks;

(4) Test the performance of the surrogate models by predicting
the performance of the remainder of the networks.

Problem Setup: Maze and Robot. We design robot controllers for
the multi-modal maze problem depicted in Figure 4. The environ-
ment consists of multiple rings and openings (Figure 4a). The robot
begins in the center of the maze. Here we are not interested in
typical case of finding the best solution to escape the maze. Instead,
we seek to establish to what degree we can sample the behavior (or
phenotype) of neural network controllers and then derive fitness
from those behaviors. This problem is much more fundamental and
difficult than predicting fitness alone. To produce this data set of
as many different high performing behaviors as possible, we build
up an archive out of robot controllers that reach every point in the
maze in the shortest path possible (b). To force a diversity of ending
positions, a grid-like diversity measure is defined (c). At the end
of the optimization, every niche should contain a robot that was
able to reach it using a short path. This way we can evaluate the
distance measures over a diverse set of optimal behaviors.

Simple feed forward controllers (see Figure 2) consisting of either
2 or 5 hidden neurons are sought that traverse the maze. Evaluation
is performed using the simulation that was created in [17]. The
robot is equipped with three laser sensors that are able to detect
the distance to the nearest walls, and are set at 45 degree angles
around the front (d). In addition, each robot has a home beacon that
detects the direction of the robot’s start position.

Data Generation. We generate data sets to test the quality of
our surrogate models. To that end, we record the data of model-
free optimization experiments. Here, optimization is performed
with a quality diversity (QD) algorithm. These algorithms are not
only used to find good solutions but also are intended to find as
many diverse and high-performing solutions as possible. We choose
MAP-Elites [18], which builds up an archive of high-performing
elites, one within each niche. Here, niches are defined as cells in
the grid shown in Figure 4. Parents are selected from the archive at
random and their genes mutated with 5% probability to form the
next generation of controllers. These child controllers are tested
and assigned the cell which corresponds to their end position. If
the child arrived at that cell with a shorter path than the current
occupant, it replaces the current occupant.

Figure 5 shows an example distance map after 5000 generations,
with almost each niche filled with a high-performing controller. The
distance values grow the further they are from the center, which is
to be expected. A number of controllers end up driving around the

a. environment

start

final position
b. quality measure

c. diversity measure
high fitness low fitness

range finder
home orientation

start

d. robot control

Figure 4: Evaluation takes place in a maze environment (a)
with a robot starting in the center. The distance of the path
of a robot to its final position defines its quality (b), whereby
a diversitymeasure allows us to train robots to reach all cells
in the map (c). Robots can sense the orientation quadrant of
the start position and uses three range finders to perceive
the distance to the nearest wall (d).

Prediction of neural network performance by phenotypic modeling GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic

maze in circles, which explains the high distance values in some
niches.

Data Used for Modeling. Data generation was performed either
with networks with 2 or 5 hidden neurons. We performed 20 repli-
cations, that is, we received data from 20 different QD runs for each
experiment configuration, each with a different random number
generator seed. This leads to 40 data sets (20 for each number of
hidden neurons).

Each data set consists of roughly 900 neural network controllers.
For each of those controllers, we received nine different data subsets:
one with the weights, and eight with phenotypes of different sizes
(4, 8, . . . , 512). Note, that the phenotypes are derived from the two
outputs of the networks, that is, if the network is fed with four
input samples, we observed eight phenotype values. We can now
describe each of the 900 controllers either by its weights, or by
phenotype vectors (of different lengths).

During modeling, these data sets are split as follows. 400 con-
trollers are used to train a model, the remainder is used to test the
model quality. Note that the observed values y will be log-scaled
before modeling, as the data contains strong outliers which might
deteriorate the models.

Quality Measures. To judge the quality of our models, we use
Kendall’s rank correlation coefficient [13]. In contrast to Pearson
correlation, this measure only considers ordinal correlation, i.e.,
the ranks of two compared sets of samples. Kendall correlation is
therefore a good measure to estimate the accuracy of a model when
used in rank-based evolutionary optimization methods.

KrigingModel. Wegenerate the Krigingmodel with the R-package
CEGO [30] as follows. For MLE, the optimization of the likelihood is
performed via the locally biased variant of the Dividing Rectangles
(DIRECT) algorithm [8]. It is configured to stop after 2000 likelihood

x

y

-6

-4

-2

0

2

4

6

8

lo
g(

di
st

an
ce

)

Figure 5: Distance map generated by MAP-Elites (lower dis-
tance equals higher fitness). Each niche in the map contains
a robot controller that is optimized towards reaching that
niche in the shortest path possible.

evaluations, or when a relative decrease in function values between
iterations drops below 10−16. The nugget effect (regularization) of
the model is turned on, to potentially account for noise in the data
or ill-conditioned kernel matrices. The model uses the Manhattan
distance (see Section 3.1).

Comparison Baseline: Linear Model. We include a linear regres-
sion model in our experiments, as a comparison baseline for the
Kriging model. Like the Kriging model, the linear model is trained
with the weight or the phenotype data. Since the generated data is
potentially very high dimensional, we need some form of variable
selection to generate reasonable models. We decided for a forward
selection approach via the Aikake Information Criterion (AIC) [28],
starting from a model that only consists of an intercept. The most
complex linear model may include main effects for all variables, but
no interactions or higher order terms are considered.

4.2 Results and Discussion
Figure 6 shows the Kendall correlation achieved by each of our mod-
els. Firstly, it can be observed that the Kriging model outperforms
the linear model in most cases, as expected. Secondly, the variants
based on phenotypic data are able to perform at least as well as the
weight models, if the number of elements in the phenotype vector
is at least 32 or more. The larger phenotype vectors do not seem to
yield much further improvement.

We confirmed these observations by applying statistical tests for
each number of hidden neurons. Firstly, we tested for the global
presence of significant differences via the non-parametric Kruskal-
Wallis rank-sum test [15], which yielded p-values of less than 10−8
in both cases, indicating that differences are present. Afterwards,
we performed Conover’s non-parametric many-to-one compar-
ison test [2], comparing each of the Kriging models against a
single model (control group). The chosen control group was the
most complex model with phenotype data of dimensionality 512.
The implementations of the employed tests were taken from the
stats and the PMCMRplus R packages [20, 21]: kruskal.test and
kwManyOneConoverTest. The respective cases with indications for
significant differences are marked on the right-hand side of each
plot in Figure 6. The statistical test largely confirms the visual eval-
uation. No evidence for differences is found between the control
group and the model with the genotypic weight data. Only models
with phenotypic data of a dimensionality of 16 or less is deemed to
be different from the control group.

Importantly, the results suggest that we can use phenotypic
surrogate models instead of those based on the genotype or weights.
The phenotypic data is largely unaffected by the number of hidden
neurons, and, hence, the number of weights.Where standardmodels
would struggle to compare the weights of differently structure
networks, a phenotypic comparison would still be possible.

The baseline linear model shows some peculiar behavior. The
model’s performance drops off for models with phenotype vectors
of more than 256 elements. This behavior can be largely explained
with number of coefficients selected by the AIC forward selection
procedure, as shown in Figure 7. Clearly, the selection procedure
will not select more than n variables. The required number of vari-
ables seems to increase non-linearly with the dimensionality of the
data.

GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic Hagg, Zaefferer, Stork, Gaier

4
8

16
32
64

128
256
512
22

nhidden=2

ctrl

nhidden=5

**

ctrl

0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5
rank correlation rank correlation

4
8

16
32
64

128
256
512
22

4
8

16
32
64

128
256
512
52

4
8

16
32
64

128
256
512
52

in
pu

t d
im

en
si

on
al

ity

(weight model) (weight model)Linear

Kriging

Linear

Kriging

Figure 6: The model quality in terms of correlation (x-axis), for linear and Kriging models and different input spaces, and
different numbers of hidden neurons (nhidden). Here, the numbers at the start of each y-axis label denotes the dimensionality
of the input vector for the corresponding model. Gray fill color indicates a model based on the weights or genotype, the white
fill color indicates phenotypic models. The y-axis labels on the right-hand side indicate p-values from a statistical test that
compares each of the Kriging models against the model marked with ctrl (*: p < 0.05,**: p < 0.01,***: p < 0.001).

model coefficients

nhidden=2

0 100 200 300 400
model coefficients

0 100 200 300 400

nhidden=5

4
8

16
32
64

128
256
512
22

4
8

16
32
64

128
256
512
52

in
pu

t d
im

en
si

on
al

ity (weight model) (weight model)

Figure 7: The number of linear model coefficients selected
via forward selection based on AIC. Gray fill color indicates
a model based on the weights or genotype, the remainder
are based on phenotype data.

Notably, the Kriging model does not show such a performance
drop, and in fact performs quite well even for the very high dimen-
sional phenotype vectors. This may be counter-intuitive at first:
Kriging is usually not suggested for high-dimensional data. We
suggest two reasons for this: Firstly, we use an isotropic model
which avoids the complex optimization of fitting numerous kernel
parameters (θ). Secondly, there may be some sort of correlation in
the observed phenotypes. Increasing the number of samples used
to generate the phenotype vector will increase the dimension, yet
also increase the density in the sampled space. In that sense, a new
phenotype observation added to a large set of existing observations

2 4 6 8 10 14 5 10 20 30
4
8

16
32
64

128
256
512
22

principal components # principal components

nhidden=2 nhidden=5

4
8

16
32
64

128
256
512
52

in
pu

t d
im

en
si

on
al

ity

(weight model) (weight model)

Figure 8: For each data set, the number of principal compo-
nents required to explain 90% of the variation in the data.
This only concerns the respective input data of the surrogate
models, the observed output (i.e., quality of the controller) is
not considered here. Gray fill color indicates weight or geno-
type data, the remainder is based on phenotypic data.

is likely to be quite similar to the existing observations. Essentially,
we assume that the latent dimensionality of the data is much lower.

To verify this, we considered a Principle Component Analysis
(PCA) of the input data (that is, excluding the dependent variable).
For each of our data sets, we performed a PCA on the weight data, as
well as on the phenotype data. In each case, we recorded the number
of principal components required to explain 90% of the variation
in the data set. This number is shown in Figure 8. There are two

Prediction of neural network performance by phenotypic modeling GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic

interesting observations here. Firstly, the number of components
levels off for the largest phenotype vectors. The median stays at
7 (nhidden=2) and 9 (nhidden=5), despite data sets with several
hundreds of variables. It seems that this confirms our assumption
that the additional columns due to higher-dimensional phenotype
vectors actually describe a much lower-dimensional, latent space.
Secondly, we can see that the number of principal components for
the weights are much larger. Yet, this does not coincide with better
models based on the weight data.

5 CONCLUSIONS
In this work, we evaluated the use of phenotypic data of neural
networks as a basis for surrogate modeling. We have shown that
models based on phenotypic data can perform at least as well as
those based on genotypic (weight) data. This was true both for a
baseline, linear model, and a non-linear Kriging model. Our analy-
sis further indicates that even high dimensional phenotypes with
several hundreds of observations can yield sound Kriging models. A
principal component analysis reveals that these high-dimensional
data sets can be very well reproduced with only very few compo-
nents. A much larger number of components is required for the
genotype data.

This success of a phenotypic model is promising, since a model
based on genotypes becomes infeasible if the compared networks
have different structures or topologies, that is, in the context of
evolutionary algorithms that can change the structure and size of
the solution encoding, e.g. in surrogate-assisted neuroevolution.
Measuring behavior of neural networks without using actual simu-
lations not only seems to be possible, but also a practical way to
compare networks.

Phenotypic distances can be used successfully as kernels to build
surrogate models that predict the fitness of networks with varying
sizes and topologies. Whereas previous approaches to construct
surrogate models of neural networks with non-uniform structure
rely on the peculiarities of the evolutionary algorithm [9], our
approach is independent of the optimization approach. In fact, a
phenotypic distance approach to modeling is independent even of
encoding: a neural network grown with NEAT, a fixed topology
network optimized with particle swarm optimization, and a con-
troller evolved with genetic programming could all share the same
surrogate model.

In future work, we plan to take the obvious next step: to ac-
tually use the developed models as surrogates in an optimization
framework. In addition, we want to investigate the generation of
phenotype vectors in more detail. As the PCA showed, as well as
the diminishing returns for models with more phenotype samples,
a lower-dimensional data set may suffice to produce good models.
Creating better, more condensed phenotype samples with less re-
dundant information is hence of interest for future work, to reduce
the load of distance calculations.

Being able to successfully model the performance of a robot
controller by observing its behavior provides a computationally
efficient and effective approach for surrogate modeling of varying-
length representations. We show that modeling the behavior of
networks avoids some complexities that are caused by genotypic

comparisons. Surrogate-assisted optimization of non-uniform rep-
resentations will allow a much more diverse set of solutions to be
calculated with a limited number of real evaluations.

REFERENCES
[1] C. C. Aggarwal, A. Hinneburg, and D. A. Keim. 2001. On the Surprising Behavior

of Distance Metrics in High Dimensional Space. In Database Theory — ICDT 2001:
8th International Conference (LNCS). London, UK.

[2] W. J. Conover and R. L. Iman. 1979. OnMultiple-comparisons Procedures. Technical
Report LA-7677-MS. Los Alamos Sci. Lab.

[3] S. J. Daniels, A. A. M. Rahat, R. M. Everson, G. R. Tabor, and J. E. Fieldsend.
2018. A Suite of Computationally Expensive Shape Optimisation Problems Using
Computational Fluid Dynamics. In International Conference on Parallel Problem
Solving from Nature.

[4] R. Dawkins. 1982. The Extended Phenotype. Oxford University Press Oxford.
[5] K. De Grave, J. Ramon, and L. De Raedt. 2008. Active Learning for High Through-

put Screening. In International Conference on Discovery Science.
[6] S. Doncieux and J.-B. Mouret. 2010. Behavioral Diversity Measures for Evolu-

tionary Robotics. In IEEE Congress on Evolutionary Computation.
[7] A. Forrester, A. Sobester, and A. Keane. 2008. Engineering Design via Surrogate

Modelling. John Wiley & Sons.
[8] J. M. Gablonsky and C. T. Kelley. 2001. A Locally-Biased form of the DIRECT

Algorithm. Journal of Global Optimization.
[9] A. Gaier, A. Asteroth, and J.-B. Mouret. 2018. Data-efficient Neuroevolution with

Kernel-Based Surrogate Models. In Proceedings of the Genetic and Evolutionary
Computation Conference.

[10] T. Hildebrandt and J. Branke. 2015. On Using Surrogates with Genetic Program-
ming. Evolutionary Computation.

[11] Y. Jin. 2011. Surrogate-assisted Evolutionary Computation: Recent Advances and
Future Challenges. Swarm and Evolutionary Computation.

[12] Y. Jin, H. Wang, T. Chugh, D. Guo, and K. Miettinen. 2018. Data-driven Evo-
lutionary Optimization: An Overview and Case Studies. IEEE Transactions on
Evolutionary Computation.

[13] M. G. Kendall and J. D. Gibbons. 1990. Rank Correlation Methods. Oxford Univer-
sity Press, London.

[14] J. R. Koza. 1994. Genetic programming. MIT Press.
[15] W. H. Kruskal and W. A. Wallis. 1952. Use of Ranks in One-Criterion Variance

Analysis. J. Amer. Statist. Assoc.
[16] A. Moraglio, K. Krawiec, and C. G. Johnson. 2012. Geometric Semantic Genetic

Programming. In International Conference on Parallel Problem Solving fromNature.
[17] J.-B. Mouret. 2011. Encouraging Behavioral Diversity in Evolutionary Robotics:

An Empirical Study. Evolutionary Computation.
[18] J.-B. Mouret and J. Clune. 2015. Illuminating Search Spaces by Mapping Elites.

arXiv:1504.04909v1.
[19] Y. S. Ong, P. B. Nair, and A. J. Keane. 2003. Evolutionary Optimization of Compu-

tationally Expensive Problems via Surrogate Modeling. AIAA Journal.
[20] T. Pohlert. 2018. PMCMRplus: Calculate Pairwise Multiple Comparisons of Mean

Rank Sums Extended - R package, version 1.4.1.
[21] R Core Team. 2018. R: A Language and Environment for Statistical Computing.
[22] C. E. Rasmussen. 2004. Gaussian Processes in Machine Learning. In Advanced

Lectures on Machine Learning. Springer.
[23] J. Snoek, H. Larochelle, and R. P. Adams. 2012. Practical Bayesian Optimization

of Machine Learning Algorithms. In Advances in Neural Information Processing
Systems.

[24] K. O. Stanley. 2006. Exploiting Regularity Without Development. In Proceedings
of the AAAI Fall Symposium on Developmental Systems. AAAI Press.

[25] K. O. Stanley and R. Miikkulainen. 2002. Evolving neural networks through
augmenting topologies. Evolutionary Computation.

[26] J. Stork, M. Zaefferer, and T. Bartz-Beielstein. 2019. Improving NeuroEvolution
Efficiency by Surrogate Model-Based Optimization with Phenotypic Distance
Kernels. In Applications of Evolutionary Computation.

[27] J. Stork, M. Zaefferer, A. Fischbach, and T. Bartz-Beielstein. 2017. Surrogate-
Assisted Learning of Neural Networks. In Proceedings 27. Workshop Computational
Intelligence.

[28] W. N. Venables and B. D. Ripley. 2002. Modern Applied Statistics with S. Springer.
[29] H. Wang, Y. Jin, and J. O. Jansen. 2016. Data-driven Surrogate-assisted Multi-

objective Evolutionary Optimization of a Trauma System. IEEE Transactions on
Evolutionary Computation.

[30] M. Zaefferer. 2019. Combinatorial Efficient Global Optimization in R - CEGO
v2.3.0. https://cran.r-project.org/package=CEGO accessed: 2019-03-19.

[31] M. Zaefferer, J. Stork, O. Flasch, and T. Bartz-Beielstein. 2018. Linear Combination
of Distance Measures for Surrogate Models in Genetic Programming. In Parallel
Problem Solving from Nature – PPSN XV. Coimbra, Portugal.

https://cran.r-project.org/package=CEGO

	Abstract
	1 Introduction
	2 Related Work
	3 Methods
	3.1 Kriging
	3.2 Genotypic vs Phenotypic Distance

	4 Evaluation
	4.1 Experimental Setup
	4.2 Results and Discussion

	5 Conclusions
	References

