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ABSTRACT
Surrogate Model Based Optimization (SMBO) is an established
technique for handling computationally expensive optimization
problems. One important application is the optimization of Particle
Reinforced Metal Matrix Composites (PRMMCs). Multi-phase ma-
terials are gaining attention. Their performance is strongly affected
by microscale properties. By optimizing the microscale structure,
these materials can be tailored to satisfy specific requirements.
Current manufacturing techniques have limited control over the
distribution of reinforcing particles and are subject to consider-
able uncertainty. Moreover, the simulation and optimization of
PRMMCs requires significant computational effort. We propose an
approach that tackles the problem of optimizing the characteristics
of PRMMCs subject to uniaxial load, by improving the particles’
spatial distribution. The optimization problem is split into a bilevel
problem: The upper-level optimization aims to find the particle dis-
tribution parameters which maximize the PRMMC limit load. Due
to potentially infeasible distributions, the lower-level problem at-
tempts to create a particle placement that reflects the specifications
of an upper-level candidate solution.

We employ an SMBO approach that combines Kriging, Sequential
Parameter Optimization, and a Genetic Algorithm. Experimental
results indicate that our approach can find promising solutions
within few evaluations, handles uncertainty, and allows insight
into the most important effects on the limit load.

CCS CONCEPTS
• Mathematics of computing → Continuous optimization; •
Information systems → Uncertainty; • Theory of computa-
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1 INTRODUCTION
Metal Matrix Composites (MMCs) are being established for compo-
nent design in applications where the property profile of conven-
tional materials cannot keep up with performance requirements.
A mix of metal and ceramic materials results into the improve-
ment of specific thermo-mechanical properties such as stiffness,
yield strength, tensile strength, creep resistance, fatigue strength,
wear resistance, and performance at elevated temperatures while
maintaining the maximum ductility [14].

To optimize the structure and the characteristics of Particle Rein-
forced MMCs (PRMMCs), different manufacturing processes have
been developed over the last 20 years. In particular, promising fore-
front manufacturing processes have been proposed and are still
under development [15, 17]. These processes aim for a better control
over reinforcement distributions. The growing interest as well as
increasing requirements lead to a need for a more thorough under-
standing of the behavior of PRMMCs on the basis of computational
simulations. Numerous models have been proposed over the years.

Various studies revealed the accuracy of simulating represen-
tative material microstructures. They are able to predict the ef-
fective properties of particle reinforced composites subjected to
elastic [12, 18, 25] and elasto-plastic deformation [2, 11, 24] with
high fidelity. Finite Element Method (FEM) simulations of 3D repre-
sentative volume elements (RVEs) appears to be widely recognized
as state-of-the-art in the field.

The load that leads to the failure of the material, the so-called
limit load, is a fundamental performance value of mechanical com-
ponents, including composite materials. It will be referred to as
𝜎𝐿𝐿 in the following. A good estimate of the limit load can be ob-
tained through large scale finite elements calculations. This leads
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Table 1: Material properties used in the numerical analyses.

Material E[GPa] 𝜈 𝜎𝑝,0 UTS[MPa]

Al6061-T6 68.9 0.3 276 295.5
SiC 380 0.19 - 3450

to difficulties related to a demand for large run times. In spite of
these issues, the recent development of Linear Matching Method
(LMM) [4, 6] allows to accurately and efficiently determine the
shakedown boundaries of composite materials [5, 9, 10]. The LMM
is a direct method for the evaluation of limits associated with an
isotropic, elastic-perfectly plastic body subjected to mechanical or
thermal cyclic and monotonic loads.

In the last two decades, research has considered the volume
fraction, the size, the shape, and the spatial distribution of the
reinforcing phase(s) as the main parameters of optimal material
design [2, 13, 16, 19, 20, 22, 26, 27]. In light of these considerations,
our research concentrates on investigating the effect of the particles’
spatial distribution and size on the limit load of PRMMCs. To that
end, we employ surrogate assisted optimization techniques which
means that, to deal with the large simulation times and considerable
uncertainty, we use data driven surrogate models to estimate the
performance of candidate solutions. Thus, an effective search for
near-optimal solutions becomes possible despite the challenging
problem characteristics.

This paper is structured as follows. Section 2 introduces the
PRMMCs optimization problem. It explains details about the limit
load evaluationmethod and the optimization structure. Ourmethod-
ology is described in Sec. 3. It presents further information about
the SBMO and the Genetic Algorithm (GA) that were used in the
study. The experimental setup and the analysis of the results are
presented in Sec. 4. Finally, the paper concludes with a discussion
in Sec. 5.

2 PRMMCS OPTIMIZATION
2.1 Problem description
The basis of the considered design problem are idealized three-
dimensional RVEs. They are formed by a variable number of elastic
reinforcing particles with spherical shape that are inserted into an
elasto-plastic matrix. Examples are shown in Fig. 1. The limit load
along the 𝑥-axis of the RVEs has to be maximized.

To calculate the 𝜎𝑥
𝐿𝐿

with Finite Element (FE) methods, geome-
tries are meshed by Abaqus C3D10 tetrahedral quadratic elements.
The resulting models are typically constituted of around 2e4 ele-
ments. Thematerial properties considered in the numerical analyses
are summarized in Table 1. They correspond to Aluminum 6061T6
that fully embeds silicon carbide (SiC) particles [3]. In order to eval-
uate the 𝜎𝑥

𝐿𝐿
properly, an analysis of the material’s microscale 3D

periodicity has been implemented. Periodic Boundary Conditions
(PBC) are assigned to RVE surfaces as reported in [7, 27].

In the experiments, we fix the reinforcement fraction volume to
10%. This indicates that the volume of particles material in relation
to the overall volume. Furthermore, particles are assumed to be
normally distributed along the three axes. The number of particles

in the RVEs and the characteristics of the normal distribution are
to be optimized.

From an optimization perspective, the problem can be formu-
lated as a bilevel, nonlinear, constrained optimization problem.
The upper-level consists of determining the spatial distribution
characteristics, specified by the number of particles and standard
deviations in each dimension that maximizes the limit load. The
lower-level consists of determining a feasible spatial distribution
holding the properties specified by the candidate solutions of the
upper-level problem.

2.2 Limit load simulation via LMM
2.2.1 Numerical description. In this article, the LMM is used

to evaluate the PRMMC’s limit load 𝜎𝑥
𝐿𝐿

as a special case of the
shakedown procedure. Details on the numerical procedure can
be found in [4]. In this section, we only attempt to provide the
general background of the procedure using the same notation as
[4]. Consider the following problem: A structure is subjected to a
cyclic history of varying temperature 𝜆𝜃 (𝑥𝑖 , 𝑡) within the volume of
the structure and it is subjected to a mechanical load 𝜆𝑃 (𝑥𝑖 , 𝑡). Here,
𝜆 denotes a load multiplier, which allows to consider whole classes
of loading histories. Hence, there exists a linear elastic solution
history, 𝜆�̂�𝑖 𝑗 = 𝜆�̂�𝜃

𝑖 𝑗
+𝜆�̂�𝑃

𝑖 𝑗
, where 𝜆�̂�𝜃

𝑖 𝑗
and 𝜆�̂�𝑃

𝑖 𝑗
are respectively the

elastic solutions due to the thermal and mechanical stress. The aim
of the LMM is to calculate the 𝜆 boundaries 𝜆𝑈𝐵 and 𝜆𝐿𝐵 , assuming
that:

𝜆𝐿𝐵 ≤ 𝜆 ≤ 𝜆𝑈𝐵, (1)

with an iterative process:

lim
𝑖𝑡𝑒𝑟→∞

𝜆𝑖𝑡𝑒𝑟𝐿𝐵 = 𝜆𝐿𝐵, lim
𝑖𝑡𝑒𝑟→∞

𝜆𝑖𝑡𝑒𝑟𝑈𝐵 = 𝜆𝑈𝐵 . (2)

Determining the 𝜆 value within this interval, it is possible to eval-
uate the effective load magnitude that represents the shakedown
limit: 𝑃 = 𝜆𝑃 and 𝜃 = 𝜆𝜃 .

The theoretical assumption behind the LMM is that the cyclic
stress and the nonlinear strain can be described as a series of iter-
ative linear elastic solutions in which the moduli are spatial and
time-dependent. After a sufficient number of cycles, the stresses
and strain rates can be approximated by cyclic states, i.e,

𝜎𝑖 𝑗 (𝑡) = 𝜎𝑖 𝑗 (𝑡 + Δ𝑡), ¤𝜖𝑖 𝑗 (𝑡) = ¤𝜖𝑖 𝑗 (𝑡 + Δ𝑡). (3)

Therefore, the asymptotic stress history may be decomposed
into the sum of three terms. This leads to the expression:

𝜎𝑖 𝑗 (𝑥, 𝑡) = 𝜆�̂�𝑖 𝑗 (𝑥, 𝑡) + 𝜌𝑖 𝑗 (𝑥) + 𝜌𝑟𝑖 𝑗 (𝑥, 𝑡), (4)

where 𝜆�̂�𝑖 𝑗 represents the linear cyclic elastic stress solution, 𝜌𝑖 𝑗
represents the residual stress field at the beginning and at the end of
the cycle while 𝜌𝑟

𝑖 𝑗
represents the residual stress occurring within

the cycle and holds:

𝜌𝑟𝑖 𝑗 (𝑥, 0) = 𝜌𝑟𝑖 𝑗 (𝑥,Δ𝑡) = +𝜌𝑟𝑖 𝑗 . (5)

The shakedown condition imposes the time dependent component
of the residual stress 𝜌𝑟

𝑖 𝑗
= 0 and consequently, the cyclic stress

history at shakedown has the form [10]:

𝜎𝑖 𝑗 = 𝜆�̂�𝑖 𝑗 (𝑥, 𝑡) + ¯𝜌𝑟
𝑖 𝑗
. (6)
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Figure 1: Examples of RVEs with different number of particles and particles’ spatial distributions.

The upper bound shakedown limit 𝜆𝑖𝑡𝑒𝑟
𝑈𝐵

is evaluated by:

𝜆𝑖𝑡𝑒𝑟𝑈𝐵 =

∫
𝑉

∫ Δ𝑡

0 𝜎𝑦 ¤̄𝜖 ( ¤𝜖𝑖 𝑗 )𝑑𝑡𝑑𝑉∫
𝑉

∫ Δ𝑡

0 �̂�𝑖 𝑗 (𝜖𝑖 𝑗 )𝑑𝑡𝑑𝑉
, (7)

in which 𝜎𝑦 is the temperature-dependent yield, ¤𝜖𝑖 𝑗 is a kinemati-

cally admissible strain rate and ¤̄𝜖 =

√
2
3 ¤𝜖𝑖 𝑗 ¤𝜖𝑖 𝑗 is the effective strain

rate. The definition of the shakedown condition enforces that no
plastic strain accumulation will occur if the combination of the ap-
plied elastic stresses and a constant residual stress field satisfy the
von Mises yield criterion at any location. Hence, the lower bound
of the shakedown limit can be computed with:

𝜆𝑖𝑡𝑒𝑟𝐿𝐵 =𝑚𝑎𝑥�̃�𝑖𝑡𝑒𝑟𝐿𝐵 subject to 𝑓 (�̃�𝑖𝑡𝑒𝑟𝐿𝐵 �̂�𝑖 𝑗 (𝑥𝑖 , 𝑡) + 𝜌𝑖 𝑗 (𝑥𝑖 )) ≤ 0, (8)

at each integration point and for all load instances. At each itera-
tion, 𝜆𝑖𝑡𝑒𝑟

𝑈𝐵
is evaluated by the obtained kinematic field and 𝜆𝑖𝑡𝑒𝑟

𝐿𝐵
is

calculated by the obtained static field. The iterative procedure is
halted when the desired level of convergence is reached arriving
to consider 𝜆𝐿𝐵 = 𝜆𝑖𝑡𝑒𝑟

𝐿𝐵
and 𝜆𝑈𝐵 = 𝜆𝑖𝑡𝑒𝑟

𝑈𝐵
. The load configuration

used in this research is characterized by �̂�𝜃
𝑖 𝑗

= 0 and a monotonic
mechanical load, therefore 𝜎𝑥

𝐿𝐿
can be expressed by:

𝜎𝑥𝐿𝐿 = �̂�𝑖 𝑗 = 𝜆�̂�𝑃𝑖 𝑗 .

For the scope of this study, we assume 𝜆 = 𝜆𝑈𝐵 , arriving to the
relation:

𝜎𝑥𝐿𝐿 = 𝜆𝑈𝐵�̂�
𝑃
𝑖 𝑗 . (9)

Thus, the shakedown multiplier 𝜆 = 𝜆𝑈𝐵 can be named limit load
multiplier 𝜆𝐿𝐿 .

2.2.2 Implementation. The simulation is implemented inAbaqus.
Since the optimization algorithms are implemented in the program-
ming language R, an interface between R and Abaqus is required.
This has been realized with the Abaqus Scripting Interface (ASI).
With the ASI, Abaqus commands can be executed via Python code,
which is interfaced with R via the command line interface.

Once the particle placement has been defined, a command line
call is used to run Python code. The Python code generates the FE
model which creates the matrix geometry and arranges the particles
correctly. Meshes are created with Abaqus automesher. To avoid
a decreased accuracy due to inadequacies of element shapes and
dimension uniformity, the minimum distance between surfaces Δ is
imposed equal to 0.1. Moreover, this pre-processing code automati-
cally assigns material properties, generates the mesh, configures

the LMM subroutine, runs the PBC code and submits the simula-
tions. Once the analysis is completed, the limit load multiplier 𝜆𝐿𝐿
is read from a file generated by Abaqus that contains the analysis
summary. The value is used as an observation which is fed back to
the optimization algorithm. The FE analyses, performed in parallel-
mode on 3 cores/6 threads on a workstation presenting Intel i7-4770
processor with 12Gb of dedicated memory, lasted approximately
35m (wall time).

2.3 Optimization problem
The bilevel optimization process is split into two different optimiza-
tion problems, one nested into the other. They will be referred to
as upper-level and lower-level optimization.

2.3.1 Upper-level optimization. From Eq. 9, one can see that
𝜎𝑥
𝐿𝐿

∝ 𝜆𝐿𝐿 , because �̂�𝑃
𝑖 𝑗
is constant. Due to this fact, optimizations

of 𝜎𝑥
𝐿𝐿

or 𝜆𝐿𝐿 are equivalent. We decided to maximize and report
𝜆𝐿𝐿 .

The objective of the upper-level problem is hence to maximize
𝜆𝐿𝐿 by trying to find the best combination of the variables of in-
terest. The variables of interest describe a distribution of particles
in the material (number of particles, standard deviations in each
dimension). Since we consider distributions, the results will dif-
fer depending on each individual sample from a distribution. The
exact positions of the particles are not defined. Thus, the objec-
tive function is non-deterministic. More formally, the upper-level
optimization can be defined as:

Find max 𝑓 (𝑁𝑝𝑎𝑟𝑡, 𝜎𝑥 , 𝜎𝑦, 𝜎𝑧) = 𝜆𝐿𝐿 (10)

subject to

{
2 < 𝑁𝑝𝑎𝑟𝑡 < 50
0.7 < 𝜎𝑥 , 𝜎𝑦, 𝜎𝑧 < 2.5

, (11)

where 𝑁𝑝𝑎𝑟𝑡 is the number of particles per RVE, 𝜎𝑥 , 𝜎𝑦 , 𝜎𝑧 are
respectively the standard deviations of the particle placements
along the x, y, and z axes.

2.3.2 Lower-level optimization. To perform the FE analysis, the
exact placement of all the 𝑁𝑝𝑎𝑟𝑡 particles has to be addressed. The
position of each particle along each axis constitutes the set of the
problem design variables.

The upper-level problem has a fixed number of variables (four:
𝑁𝑝𝑎𝑟𝑡, 𝜎𝑥 , 𝜎𝑦, 𝜎𝑧 ). In contrast, the number of lower-level optimiza-
tion variables is not fixed. In fact, this number depends on the
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upper-level variables. That is, if another particle is added (𝑁𝑝𝑎𝑟𝑡 is
increased by one), then three new variables have to be optimized
in the lower level (one for each coordinate of the new particle’s
position).

The goal of the lower-level optimization is to specify the ex-
act positions of all particles, that respects the statistical proper-
ties specified by an upper-level candidate solution. Therefore, the
objective function to be minimized is defined as the deviation be-
tween actual sample statistics and the desired distribution. Fur-
thermore, constraints that limit the feasible region are imposed:
Non-linear inequality constraints avoid overlapping particles while
box-constraints ensure that particles are fully embedded in the
material matrix. Formally, the lower-level optimization problem
can be defined as:

Find min 𝑔(𝑥𝑖𝑥 , 𝑥𝑖𝑦, 𝑥𝑖𝑧 , 𝑖 = 1, ..., 𝑁𝑝𝑎𝑟𝑡 ) = |𝑠𝑑 (𝑥1
𝑥 , ..., 𝑥

𝑁𝑝𝑎𝑟𝑡

𝑥 ) − 𝜎𝑥 |+

∥𝑠𝑑 (𝑥1
𝑦, ..., 𝑥

𝑁𝑝𝑎𝑟𝑡

𝑦 ) − 𝜎𝑦 | + | 𝑠𝑑 (𝑥1
𝑧 , ..., 𝑥

𝑁𝑝𝑎𝑟𝑡

𝑧 ) − 𝜎𝑧 |
(12)

subject to
𝑥𝑖𝑥 , 𝑥

𝑖
𝑦, 𝑥

𝑖
𝑧 ∈ [𝑙𝑏 + 𝑟 + Δ, 𝑢𝑏 − 𝑟 − Δ], 𝑖 = 1, ..., 𝑁𝑝𝑎𝑟𝑡 ,

𝐶𝑖 𝑗 = Δ −
√
(𝑥𝑖𝑥 − 𝑥

𝑗
𝑥 )2 + (𝑥𝑖𝑦 − 𝑥

𝑗
𝑦)2 + (𝑥𝑖𝑧 − 𝑥

𝑗
𝑧 )2) ≤ 0,

𝑖, 𝑗 = 1, ..., 𝑁𝑝𝑎𝑟𝑡 , 𝑗 ≠ 𝑖,

(13)

where 𝑥𝑖𝑥 , 𝑥𝑖𝑦, 𝑥𝑖𝑧 are the i-th particle’s exact position along the three
axes, 𝜎𝑥 , 𝜎𝑦, 𝜎𝑧 are the reference statistical properties of the distri-
bution defined by the upper-level candidate solution, sd computes
the sample standard deviation, and 𝑙𝑏 = 0, 𝑢𝑏 = 10 represent the
coordinates of the matrix bounds. The particle radius 𝑟 strictly
depends on 𝑁𝑝𝑎𝑟𝑡 through the expression

𝑟 =
3 ×𝑉𝑜𝑙𝑢𝑚𝑒 ×𝑉 𝑓

(4𝜋 × 𝑁𝑝𝑎𝑟𝑡 )1/3

and Δ is the minimum distance between the particles and between
the particles and the matrix bounds already mentioned in Sec. 2.2.2.

3 METHODS
Here, we describe the methods that have been employed to resolve
the bilevel PRMMC design problem. A GA is chosen to solve the
lower-level problem. Sequential Parameter Optimization (SPO) [1]
has been used as a tuner for the lower-level GA optimizer, and also
to solve the upper-level problem. The details are provided in the
following.

3.1 Upper-level optimization via Kriging and
SPO

To solve the upper-level optimization problem, we require a method
that accounts for the stochastic and expensive nature of the problem.
Hence, we used the Sequential Parameter Optimization Toolbox
(SPOT), which is an implementation of the SPO in the programming
language R. From the set of surrogate models provided by SPOT,
we decided to use Kriging as a surrogate model. Kriging assumes
that the data follows a multi-variate Gaussian distribution, where
errors are spatially correlated. A more detailed and easy to follow
description of Kriging is given by Forrester et al. [8]. Importantly,

the spatial correlation of the data is encoded within a kernel func-
tion. A frequently employed correlation function that models the
correlation between samples (or candidate solutions) is the Gauss-
ian kernel 𝑘 (𝑧, 𝑧′) = exp(−∑𝑛

𝑖=1𝜃𝑖 |𝑧𝑖 − 𝑧′
𝑖
|2). Here, 𝑛 is the number

of modeled variables (search space dimension), 𝜃𝑖 is a parameter of
the kernel (determined by Maximum Likelihood Estimation (MLE)).
Furthermore, 𝑧 as well as 𝑧′ are potential candidate solutions (or
samples). In our case, they are 𝑧 = {𝑁𝑝𝑎𝑟𝑡, 𝜎𝑥 , 𝜎𝑦, 𝜎𝑧 }. Employing
such a kernel, a Kriging model produces the following predictor:

𝑦 (𝑧∗) = 𝜇 + k𝑇K−1 (y − 1𝜇), (14)

where y are the training observations, 𝑦 (𝑧∗) is the predicted func-
tion value of a new sample 𝑧∗, 𝜇 represents the process mean deter-
mined by MLE, 1 is a vector of ones, K is the matrix that collects
all pair-wise correlations of the training samples Z, and k is the
column vector of correlations between the set of training samples Z
and the new sample 𝑧∗. After appropriate training, such a predictor
may be employed to replace an expensive objective function.

Inmodel based optimization, Kriging is a popular choice, as it also
provides an estimate of its own prediction uncertainty. This estimate
can be used to balance exploration and exploitation by computing
the expected improvement (EI) of candidate solutions [21]. The
uncertainty of the model is computed with

𝑠2 (𝑧∗) = 𝜎2
𝑝𝑟𝑜𝑐𝑒𝑠𝑠 (1 − k𝑇K−1k), (15)

where 𝜎𝑝𝑟𝑜𝑐𝑒𝑠𝑠 is the process variance, determined by MLE. If the
uncertainty is zero, the EI is also zero. Else, the uncertainty is non-
zero, EI is

EI(𝑧∗) = y𝑖𝑚𝑝Φ

( y𝑖𝑚𝑝

𝑠 (𝑧∗)

)
+ 𝑠 (𝑧∗)𝜙

( y𝑖𝑚𝑝

𝑠 (𝑧∗)

)
,

where y𝑖𝑚𝑝 = min(y) −𝑦 (𝑧∗). Φ() indicates the normal cumulative
distribution function. Respectively, 𝜙 () is the probability density
function.

It has to be noted, that the above description of Kriging presents
an interpolating model, which assumes zero error at already ob-
served locations. Clearly, this does not take noise or uncertainty
into account. One way to account for noise is to introduce the so-
called nugget effect. This essentially adds a constant value 𝜂 to the
diagonal of the kernel matrix K. The parameter 𝜂 is determined by
MLE. The nugget effect enables the model to regress the observed
data, and hence smoothen noisy observations. Furthermore, it may
now produce a non-zero estimate of the uncertainty at observed
locations.

Algorithm 1 Sequential parameter optimization

1: 𝑡 = 0. 𝑃 (𝑡) = SetInitialPopulation().
2: Select one or several surrogate models𝔐.
3: Evaluate(𝑃 (𝑡)) on 𝑓 .
4: while not TerminationCriterion() do
5: Use 𝑃 (𝑡) to build a model𝑀 (𝑡) using𝔐.
6: 𝑃 ′(𝑡 + 1) = GlobalSearch(𝑀 (𝑡)).
7: Evaluate(𝑃 ′(𝑡 + 1)) on 𝑓 .
8: 𝑃 (𝑡 + 1) = 𝑃 (𝑡) ∪ 𝑃 ′(𝑡 + 1).
9: 𝑡 = 𝑡 + 1.
10: end while
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By employing a surrogate model (e.g., Kriging), SPO finds im-
proved solutions in the following way (see Algorithm 1). A set of
candidate solutions is created by a design of experiment method
(e.g., Latin-hypercube sampling). Then, the solutions are evaluated
with the objective function. Next, the surrogate model is built. Then,
an optimizer searches for the most promising candidate solution
by optimizing an infill criterion (here: expected improvement). The
new candidate solution is evaluated with the objective function,
potentially with replications to account for uncertainty. These ex-
pensive objective function values are added to the previously eval-
uated ones. Then, the surrogate model can be updated to improve
its accuracy. These steps are repeated until a satisfying solution has
been found or the computational budget is exhausted.

This standard SPO procedure has to be modified to account for
feasibility issues that are present in the PRMMC design problem.
In fact, the upper-level optimization is a constrained problem with
unknown feasible regions. It is possible to define particle distri-
butions which are physically infeasible: If too many or too large
particles are present, they may not respect the desired distribution
parameters anymore. Then, the lower-level optimization cannot
succeed in finding adequate particle placements that satisfy the de-
sired properties of the upper-level candidate solutions. Hence, there
will be some unknown difference between the sample statistics of
the actual particle placements

�̃�𝑥 = 𝑠𝑑 (𝑥1
𝑥 , ..., 𝑥

𝑁𝑝𝑎𝑟𝑡

𝑥 )

�̃�𝑦 = 𝑠𝑑 (𝑥1
𝑦, ..., 𝑥

𝑁𝑝𝑎𝑟𝑡

𝑦 )

�̃�𝑧 = 𝑠𝑑 (𝑥1
𝑧 , ..., 𝑥

𝑁𝑝𝑎𝑟𝑡

𝑧 )

and the desired statistics of the candidate solution 𝜎𝑥 , 𝜎𝑦, 𝜎𝑧 . Thus,
the lower-level optimization may result into particle placements
that follow a distribution that is different from the desired one. To
overcome this problem, SPO was modified to allow for updating
proposed candidate solutions after they were evaluated. In essence,
the lower-level optimization may replace an infeasible candidate
solution of the upper-level problem by a different candidate that is
feasible. After each upper-level objective function evaluation, an
update to the upper-level candidate variables is made by replacing
𝜎𝑥 , 𝜎𝑦, 𝜎𝑧 with �̃�𝑥 , �̃�𝑦, �̃�𝑧 .

3.2 Lower-level optimization via GA
Finding a feasible particle placement that is as close as possible
to the desired distribution characteristics given by an upper-level
candidate solution represents a challenging issue. This is due to
the high dimensionality of the problem, its non-linearity and its
constraints. For these reasons, this assignment has been treated as a
complex black-box optimization problem. The interest in a globally
optimal solution, the lack of preliminary information about the
objective function features and the necessity of a robust optimizer
lead us to adopt an evolutionary algorithm for this task. In detail,
we chose the Genetic Algorithm (GA) available in the R package
GA [23] because of its robustness and ease of use.

Choosing a GA produces an additional issue: the optimization
performance strongly relies upon its parametrization. Finding an
appropriate set of algorithm parameters is not a trivial problem
and a good solution can lead to a considerable improvement of

algorithm performance. Hence, we decided to tune the GA in a
preliminary study. SPO is chosen to tune the GA.

4 EXPERIMENTS
4.1 Setup

4.1.1 Preliminary lower-level optimization tuning. A preliminary
tuning process has been conducted on the GA design parameters in
order to reduce the computation time required by each lower-level
optimization run. Particularly, SPOT has been employed to perform
amodel based optimization of the GA parameters. The probability of
crossover between pairs of chromosomes (crossover), the number
of best fitness individuals to survive at each generation (elitism),
the population size (popSize), the probability of performing a local
search at each iteration of the GA (poptim), the probability to select
the solutions with the largest fitness as starting point of the local
search (pressel) and the maximum number of iterations of the
local search (maxiter) have been tuned. Similarly to the upper-level
optimization, Kriging has been adopted as surrogate model and has
been optimized by a L-BFGS-B algorithm. The first model has been
built using ten samples generated by Latin hypercube sampling. The
number of expensive evaluations used to train the model has been
limited to 150 and each candidate has been evaluated three times
to account for uncertainty. Furthermore, the maximum number of
function evaluations on the model has been fixed to 800. GAs are
stochastic optimizers. To receive reliable performance estimates, the
tuning procedure has been repeated with 40 different combinations
of GA and SPOT random number generator seeds, for two possible
upper-level candidate solutions.

4.1.2 Lower-level. The employed GA implementation has the
capability of considering box-constraints but not non-linear in-
equality constraints. For this reason, a penalty approach has been
used to direct the search to feasible regions. A constraint tolerance
equal to 𝜙 = 1e-4 has been enforced. A penalty is added to the
objective function value 𝑔 as follows:

𝑔penalized =

{
𝑔 +𝜓𝐶 if 𝐶 > 𝜙, unfeasible solution,
𝑔 if 𝐶 ≤ 𝜙, feasible solution,

(16)

where𝜓 = 1e3. We define 𝐶+ as the set of all the 𝑙 positive values
among all the 𝐶𝑖 𝑗 . Then, 𝐶 is calculated with:

𝐶 =
∑
𝑙

𝐶+
𝑙
. (17)

Before every run, the box-constraints have to be calculated with
respect to the upper-level candidate solution variable 𝑁𝑝𝑎𝑟𝑡 . This
study has been conducted with a fixed reinforcement fraction vol-
ume. That means, the combined volume of the particles stays con-
stant. Consequently, particles sizes have to change when their num-
ber changes. The box-constraints are the maximum and minimum
values that the particles’ centers can assume to assure a minimum
distance between particle and matrix surfaces of at least Δ, see Eq.
(13). The maximum number of GA generations has been set to 2e4.
All the other parameters shown in Table 2 have been fixed after the
tuning process.

4.1.3 Upper-level. The upper-level optimization has been per-
formed using the SPOT. An initial set of ten candidate solutions is
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Table 2: The search bounds and spacing that has been em-
ployed for the tuning of the lower-level optimization algo-
rithm, i.e., the GA. Results of the preliminary lower-level
tuning. The depicted GA parameter values have been deter-
mined to be optimal in the preliminary tuning experiments.

Values crossover elitism popSize poptim pressel maxiter

Lower bound 0.5 1 25 0 0 100
Upper bound 0.8 10 80 0.001 1 500
Spacing - 1 1 0.0001 0.1 1
Optimum configuration 0.59 3 32 0 - -

created by Latin hypercube sampling using the designLHD function.
We employ a Kriging model as implemented in the R package SPOT:
buildKriging. The noise parameter has been set to (TRUE) due to
the stochastic nature of the problem. The Kriging surrogate will be
subject to optimization via L-BFGS-B for a maximum number of
700 evaluations. Initially, new candidate solutions will be evaluated
three times to account for uncertainty. The variable 𝜎𝑥 , 𝜎𝑦 and 𝜎𝑧
have been treated as continuous variables, whereas 𝑁𝑝𝑎𝑟𝑡 has been
considered as an integer variable in SPOT.

4.1.4 LMM configuration. The LMM has been used in this con-
text to evaluate the limit load. Therefore, a load configuration of the
type 𝜆�̂�𝑖 𝑗 = 𝜆�̂�𝑃

𝑖 𝑗
has been imposed setting 𝜆�̂�𝜃

𝑖 𝑗
= 0. The reference

value �̂�𝑃
𝑖 𝑗

has been set to 6e2 𝑀𝑃𝑎, to simulate a force of 6e4 𝑁

applied to the whole matrix surface. Based on previous simulations,
this value has been chosen to assure that the load multiplier always
respects 0 < 𝜆𝐿𝐿 < 1. The maximum number of iterations has been
limited to 300 and the convergence level has been fixed to 1e-4.

4.2 Results and analysis
4.2.1 Preliminary lower-level optimization tuning. To ensure

good performance of the most critical cases (large number of par-
ticles), the GA has been tuned. It was tuned for the two reference
cases (which are potential upper-level solutions) reported in Table
3.

The results of the tuning are presented in Table 2. Sporadic local
optimizations appear to not improve the GA’s performance (i.e.,
poptim is zero). Since the values of pressel and maxiter do not
matter when poptim is zero, they are omitted.

Table 3: The two different upper-level candidate solutions
for which a tuning of the lower-level GA has been per-
formed.

Configurations 𝜎𝑥 𝜎𝑦 𝜎𝑧 𝑁𝑝𝑎𝑟𝑡

1 2 2 2 20
2 1.5 1.5 1.5 50

4.3 Upper-level optimization
The results showed that the search procedure was able to find a
promising solution rather early. Overall, 500 iterations were per-
formed but there was no improvement after the 120𝑡ℎ iteration, as
shown in Fig. 2.

Figure 2: Evolution of the best observation over the itera-
tions of the upper-level optimization.

Table 4: Best-found upper-level problem design and variable
importance ranking, based on the kernel parameter 𝜃 of the
last Kriging model trained during the optimization process.

𝑁𝑝𝑎𝑟𝑡 𝜎𝑥 𝜎𝑦 𝜎𝑧

Best-found values 45 2.463 1.320 1.572
Importance (𝜃 ) 7.714 4.007 1.827 1.68

The results obtained by the upper-level optimization may help
to understand the effect of the particles’ spatial distribution on the
limit load 𝜎𝑥

𝐿𝐿
. To that end, we use the last surrogate model that

has been trained by SPOT. The importance of the different vari-
ables can be estimated from the activity parameters 𝜃 (which are
determined for each problem variable) in that model. The 𝜃 values
are shown in Table 4. The number of particles has the largest value
and hence seems to have the strongest effect on the limit load. This
is not an unexpected result: with a fixed reinforcement fraction
volume, a change of the number of particles results in a change
of their size. It is well-known from the literature that two things
play a prevailing role in the interaction between the two PRMMC
phases: the ratio between particle volume and their surface as well
as the particles’ absolute radius of curvature [28, 29]. Among the
remaining variables, the most significant for this optimization is
the standard deviation of the particle distribution along the x-axis
𝜎𝑥 . This result can easily be explained by the physical conditions of
this study. The analysis has been conducted applying a distributed
uni-axial load in the direction of the x-axis. This means that, al-
though the composite structure is considerably inhomogeneous,
the prevalent stress will be directed in the direction of the x-axis.
Therefore, changing the distribution along that direction will have
an immediate effect on the material’s ability to resist stresses. This
is confirmed by the importance of the other two axes’ distribution
characteristics 𝜎𝑦 and 𝜎𝑧 . These two directions are orthogonal to
the stress applied, which explains their similar importance.

The best parameter values found during the optimization run
are reported in Table 4.

Following from the earlier discussion of the parameter impor-
tance, it is clear that the particles will tend to assume a rather
narrow distribution with respect to the x-plane and spread in the
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(a) 𝑁𝑝𝑎𝑟𝑡 𝑣𝑠𝜎𝑥 (b) 𝜎𝑥 vs 𝜎𝑦

(c) 𝑁𝑝𝑎𝑟𝑡 vs 𝜎𝑦 (d) 𝜎𝑥 vs 𝜎𝑧

(e) 𝑁𝑝𝑎𝑟𝑡 vs 𝜎𝑧 (f) 𝜎𝑦 vs 𝜎𝑧

Figure 3: Visualizations of the objective function landscapes
in respect of all variable combinations. For each individual
plots, variables that are not shown are fixed to the respective
optimal values.

x-axis. This means that the arrangement tends to align the parti-
cles, to create a sort of fragmented fiber. It is well-known that the
fiber reinforced metal matrix composites are among the most well
performing materials in case of uniaxial stress, but they are usu-
ally more expensive to produce than PRMMCs. With this optimal
configuration, a value of 𝜆𝐿𝐿𝑜𝑝𝑡 = 0.691 has been determined. The
corresponding limit load 𝜎𝑥

𝐿𝐿
is equal to: 𝜆𝐿𝐿 × 𝜎𝑃

𝑖 𝑗
= 414.6𝑀𝑃𝑎.

It is worth to highlight that 𝜆𝐿𝐿𝑜𝑝𝑡 represents a significant improve-
ment with respect to the worst value found in the optimization
process, 𝜆𝐿𝐿𝑤𝑜𝑟𝑠𝑡 = 0.519. This constitutes a relative improvement of
around 33%.

An additional analysis has been performed to validate that the
best solution found during the optimization (final best) is actually
better than the best solution from the initial design (initial best). To

Figure 4: Comparison of examples of RVEs with the opti-
mumparticles distribution (left) and the worst (right) found
during the optimization process.

that end, 100 replicates have been performedwith the LMManalysis,
for each candidate. The results are shown in the histogram in Fig. 5.
The plot indicates that the solution improved considerably, even
taking the uncertainty of the objective value into account. This
is confirmed by statistical tests: the parametric Welch’s t-test as
well as the non-parametric Wilcoxon rank sum test report p-values
< 1e-16. That means, there is sufficient evidence to claim that the
difference between these two solutions is significant.
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Figure 5: Validation: A comparison of histograms for the fi-
nal best, 𝜆𝑜𝑝𝑡

𝑈𝐵
, and the initial best solution. Histograms are

based on 100 simulation replications.

5 CONCLUSIONS AND OUTLOOK
This study aimed to maximize the limit load multiplier of a PRMMC
subjected to a monotonic mechanical load. To that end, we em-
ployed a bilevel SMBO approach coupled with an FE simulation
solver and the LMM. For this investigation, maximizing the limit
loadmultiplier results into themaximization of the limit load, which
was the original property of interest. The upper-level optimization
has been performed using SPOT with a Kriging surrogate model.
The lower-level optimization has been performed using a GA. To im-
prove the GA performance, its parameters were additionally tuned
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by SPOT. This combined procedure (tuning plus lower and upper-
level optimization) yields a promising solution to the PRMMC de-
sign problem. The results of this research clearly highlight that,
with a fixed reinforcement fraction volume, both the number of
particles per RVE and the particles’ spatial distribution strongly
influence the limit load. The optimum RVE configuration obtained
through the proposed optimization process performs up to 33%
better than a non-optimized solution.

The problem design variables do not deterministically define
the value of the limit load multiplier. Therefore, an uncertainty
analysis on the initial and final optimum configurations was used to
address the effect of the exact particle placement. Indeed, the results
revealed that the proposed method found significantly improved
solutions.

However, to judge whether the algorithm in fact produces such
results consistently, and to avoid possible bias due to stochastic
procedures, a single optimization run is not sufficient. For future
work, we propose to validate the performance of the proposed opti-
mization framework by performing repeated runs of the algorithm.
To avoid the obstacle of high evaluation times, such replicated runs
may employ considerably fewer evaluations of the objective func-
tion. Less than 25% of the run simulations were sufficient to find
the estimated optimum, hence, more effort could have been spent
in uncertainty handling and replications.

Furthermore, an in-detail study should consider to tune the upper
level optimization process. Similar to the GA, SPOT has parameters
that affect its performance, for example, the chosen optimizer of
the surrogate model (here: L-BFGS-B). This is a continuous, local
optimizer. This is not necessarily problematic, since the surrogate
model may help to smoothen the ruggedness produced by the
integer variable (𝑁𝑝𝑎𝑟𝑡 ). Also, the locality of L-BFGS-B may not
be problematic, since each iteration of SPOT yields a restart of
the L-BFGS-B algorithm, hence enabling a global search. Still, an
alternative which is global and able to handle ordinal integers
may be preferable for this test case. A mixed-integer evolutionary
algorithm may hence be a promising choice.

Considering the results obtained, the authors also plan to lever-
age the flexibility of the framework, to extend the research to more
load conditions and different PRMMCs configurations.
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