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Abstract Increasing computational power and the avail-

ability of 3D printers provide new tools for the combina-

tion of modeling and experimentation. Several simula-

tion tools can be run independently and in parallel, e.g.,

long running computational fluid dynamics simulations

can be accompanied by experiments with 3D printers.

Furthermore, results from analytical and data-driven

models can be incorporated. However, there are funda-

mental differences between these modeling approaches:

some models, e.g., analytical models, use domain knowl-

edge, whereas data-driven models do not require any in-

formation about the underlying processes. At the same

time, data-driven models require input and output data,

but analytical models do not. The optimization via mul-

timodel simulation (OMMS) approach, which is able

to combine results from these different models, is intro-
duced in this paper. We believe that OMMS improves

the robustness of the optimization, accelerates the opti-

mization-via-simulation process, and provides a unified

approach.

Using cyclonic dust separators as a real-world simu-

lation problem, the feasibility of this approach is demon-

strated and a proof-of-concept is presented. Cyclones
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are popular devices used to filter dust from the emit-

ted flue gases. They are applied as pre-filters in many

industrial processes including energy production and

grain processing facilities. Pros and cons of this mul-

timodel optimization approach are discussed and expe-

riences from experiments are presented.

Keywords Combined simulation · multimodeling ·
simulation-based optimization · metamodel · multi-

fidelity optimization · stacking · response surface

methodology · 3D printing · computational fluid

dynamics

1 Introduction

In many real-world optimization applications, models

support the optimization algorithm by giving valuable

information with respect to the optimized system. Mod-

eling allows the estimation of system performance un-

der new conditions as well as the comparison of differ-

ent operating conditions and parameterizations, e.g.,

new geometries. This article shows how different model

types, namely analytical, surrogate, computational fluid

dynamics (CFD), and 3D printing models can be em-

ployed in an optimization process. Because every mod-

eling approach has its advantages and disadvantages, a

combination, which uses information from several mod-

els at the same time, can be beneficial.

Hence, the first contribution of this paper is to out-

line how heterogenous models and data sources can be

integrated into a streamlined optimization process. The

term “heterogenous” refers to a wide variety of dis-

tinguishing features of the models, such as run time,

complexity, theoretical basis, computation versus labo-

ratory experiments, and many more. The second con-

tribution is the demonstration of how the proposed ap-
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proach is applicable to the cyclone optimization prob-

lem. Finding an optimal geometry for cyclone dust col-

lectors is a well studied, non trivial optimization prob-

lem of high practical relevance. We describe how this

single application gives rise to diverse types of models

and show how the derived information may be incorpo-

rated into the optimization algorithm in a meaningful

way. The third contribution is a detailed discussion of

our findings, which is of great importance for practi-

tioners.

Loosely speaking, mathematical modeling is “the

link between mathematics and the rest of the world”

(Meerschaert 2013). Mathematical modeling can be per-

formed using analytical and numerical models: Analyti-

cal models are mathematical models that have a closed

form solution, i.e., the solution to the equations used

to describe changes in a system can be expressed as

a mathematical analytic function. Nelson (1995) refers

to analytical models as “rough-cut models”, i.e., math-

ematically solvable and typically less detailed models.

Numerical (simulation) models are mathematical mod-

els that use some sort of numerical time-stepping meth-

ods such as Newton’s method to simulate the model’s

behavior over time. In contrast to analytical models,

solutions of simulation models are usually presented

as tables or plots. Simulation is a widely used method

for studying complex real-world systems, because many

systems cannot be completely described by analytical

models. Also, experimentation with the real system is

often infeasible or expensive (Law 2007).

Nowadays, CFD simulation is a well established tech-

nique. It is also used in many studies, which describe

the topic discussed in this publication: the optimization

of cyclone separator geometries (Hoffmann and Stein

2007; Elsayed and Lacor 2010).

In contrast to simulations, models may also also be

of a physical nature, that is, in the sense of real-world or

laboratory experiments. 3D-printing is a popular mod-

eling technique of this type. It is commonly used to

validate the results, e.g., a certain geometry, from CFD

simulations. Recently, 3D-printing was integrated into

the optimization via simulation loop (Preen and Bull

2014).

Another class of models that gained importance over

the last decades are surrogate models, also known as

metamodels (Jin et al. 2001; Bartz-Beielstein and Zaef-

ferer 2017). They are built from and then used instead

of the underlying real processes or simulation models.

Popular metamodeling techniques include regression,

radial basis functions, and Kriging (Santner et al. 2003;

Kleijnen 2008).

Although the model based approach can be consid-

ered a success story, it also causes some problems. Sev-

eral critical issues in simulation studies are related to

errors (Nelson 1995). These errors can be due to bias

(e.g., initial-condition effects) or to problems with the

pseudorandom-number generators. If feasible, an an-

alytical analysis is often preferable to simulation, be-

cause of the lack of sampling error. Simulation models

can also be computationally demanding, because each

simulation describes only one single setting. Therefore,

several repeats with varying input data are necessary,

whereas an analytical model allows the calculation of

the exact characteristics of the system for several set-

tings. Furthermore, an inappropriate level of model de-

tail, failure to collect adequate system data, and using

wrong performance indicators for comparisons are com-

mon pitfalls in both analytical and numerical simula-

tion studies (Law 2007).

The increasing computational power and the avail-

ability of 3D printers provide tools for new modeling

approaches. Several simulations can be run in parallel,

e.g., long running CFD simulations can be accompa-

nied by experiments with 3D printers, whereas the an-

alytical model is evaluated as a baseline. Combinations

of the following approaches are possible: (i) analytical

models, (ii) numerical simulation, (iii) surrogate mod-

els, (iv) lab experiments, and (v) field experiments. The

central question in this context is: Are there any bene-

fits in combining different modeling approaches and can

the weakness of one approach be compensated by other

approaches? To answer this question, an approach to

combine these heterogeneous results is necessary. This

article presents a new approach to handle several sim-

ulation models in parallel, which will be referred to as

optimization via multimodel simulation (OMMS). The

OMMS approach can be used as the central part of the

well-established optimization via simulation methodol-

ogy (Fu 1994). To exemplify OMMS, a real-world ap-

plication is used: cyclone dust collectors. This article

presents results from an experimental study, which can

be regarded as a proof-of-concept. For the experiments,

we have chosen a combination of four different modeling

approaches:

(MA) analytical,

(MC) CFD simulation,

(MS) surrogate (metamodels), and

(MP ) 3D printing models.

Many textbooks describe methods for finding the

best model, but do not discuss the combination of sev-

eral models. Nelson (1995) states that textbooks “tend

to give the impression that there is a unique best model

of any real or conceptual system. This is not correct.”

More than one type of model will be used in practice.

The idea of using different models with different res-

olutions has been discussed in the literature for many
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years. Zeigler and Oren (1986) describe multiple levels

of model aggregation (resolution, abstraction). These

levels depend on the objectives, knowledge, and the

available budget (resources, e.g., time). Fishwick and

Zeigler (1992) present a formalism and a methodology

for developing multiple, cooperative models of physi-

cal systems from qualitative physics. Barzier and Perry

(1991) describe a two-level modeling approach for de-

veloping simulation models in the shipbuilding indus-

try. Chaudhuri et al. (2015) describe a flapping wing

optimization task. They use multiple surrogates, mul-

tiple infill criteria, and multiple points for the same

experimental data set. Kazemi et al. (2016) use differ-

ent machine learning approaches to create simple and

reliable models for predicting granule size distributions.

An iterative procedure assisted by cross validation was

implemented to find the best model among thousands.

The cyclone modeling, simulation, and optimization ap-

proach presented in our study is related to the work

of Preen and Bull (2014), who optimized vertical-axis

wind turbines using miniaturized 3D-printed wind tur-

bines.

Yang (2003) states that selection of one model can

be better when the errors in prediction are small and

that the model combination works better when the er-

rors are large. Zerpa et al. (2005) demonstrate that a

weighted average surrogate model performs better than

individual surrogates. Instead of using individual surro-

gate models, Goel et al. (2007) propose using the best

surrogate or a weighted average surrogate model from

an ensemble of surrogates to identify regions of high

uncertainty and to improve the robustness of the ap-

proximations. They report that there is no single sur-

rogate model that consistently performs better than the

others and that ensembles of surrogates “performed at

par with the corresponding best surrogate model for

all test problems” and the ensemble based approach

yields robust solutions. Simpson et al. (2012) present

a thoughtful review of several multimodel approaches.

They state that “the use of multiple surrogates (i.e., a

set of surrogates and possibly a weighted average sur-

rogate) is very appealing in design optimization due to

the fact that the best surrogate may not lead to the

best result; and complementary because fitting many

surrogates and repeating optimizations is cheap com-

pared to cost of simulation.” They also describe a multi-

disciplinary approach which is not directly comparable

to OMMS, because independent models for different

sub-systems are combined rather than integrating sev-

eral models of the same system. Müller and Shoemaker

(2014) use Latin hypercube sampling to generate initial

design points, cross-validation to evaluate the model

quality of several surrogate models, and the Dempster-

Shafer theory approach for the combination of surro-

gate models (Dempster 1968). They demonstrate that

surrogate model combinations containing radial basis

function models performed best.

Furthermore, co-Kriging, which is a popular method

that combines results from fine and coarse grained mod-

els, can be mentioned in this context (Forrester et al.

2007). Typically, co-Kriging tries to combine data from

models which have different fidelity, e.g., a fine model

that is expensive to compute and a less accurate, coarse

model, which is cheaper to compute. In contrast to

single-fidelity Kriging models, co-Kriging attempts to

learn the correlation between the coarse and fine model,

thus being able to exploit the larger amount of data

derived from the coarse model to improve the represen-

tation of the expensive, fine model. This could be used

for the meta-modeling step, especially when different

levels of fidelity are available.

In general, there are two options to deal with mul-

tiple models: (i) selection of the best model and (ii)

combination of results from several models. Most ap-

proaches try to select one model, whereas OMMS com-

bines results from several models using stacked regres-

sion (Wolpert 1992; Bartz-Beielstein 2016). Our study

presents an integrated simulation and experimentation

methodology on various scales (or layers).

This paper is structured as follows: Cyclone dust

collectors are briefly described in Section 2. Section 3

presents the OMMS loop. Section 4 compares results

from different modeling approaches. Experimental re-

sults based on these modeling approaches are presented

in Section 5. How to combine results from various mod-

els via ensemble building is shown in Section 6. Finally,

Section 7 gives a conclusion and an outlook.

2 Cyclone Dust Collectors

Throughout this article, we will use the cyclone geome-

try optimization problem as an example to demonstrate

the introduced OMMS approach. Cyclones are used in

oil and gas, iron and steel, chemical and food indus-

try to filter a maximal amount of dust from flue gas

(Hoffmann and Stein 2007). They can be applied in ex-

tremely harsh and demanding environments, but show

a relatively low collection efficiency compared to elec-

trostatic dust collectors. An efficient cyclone requires

the optimization of its geometry parameters, which are

shown in Figure 1. Even with today’s modern tools, the

complexity of cyclone behavior is such that experimen-

tal studies are necessary for a solid understanding of

the phenomena governing their behavior. The cyclone

geometry can be specified by the parameter vector, ~xg,
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Table 1 Nomenclature from Löffler (1988). “Values (L, M, S)” refers to the values of the geometry parameters ~xg for the
Löffler, Muschelknautz E., and Stairmand high efficiency cyclones, respectively. The vortex finder immersion, ht, is modified
for every cyclone geometry. The type “~xp” denotes operating parameters. Parameter values, which depend on other values,
are labeled as “*” in the Type column. Parameters to be optimized are labeled in the last column.

Parameter Units Values (L, M, S) Type Description Optimized
be mm 12.8; 9.92; 7.97 ~xg inlet width yes
Da mm 80.64; 116.48; 39.97 ~xg body diameter yes
Dt mm 26.88; 29.12; 19.98 ~xg diameter of the vortex finder yes
Du mm 26.88; 39.04; 15.04 ~xg diameter of the dust exit yes
h mm 160; 160; 160 ~xg total height of the cyclone yes
he mm 38.4; 29.6; 19.98 ~xg inlet height yes
ht mm 0; 35; 44 ~xg vortex finder (outlet pipe) immersion yes
hz mm 44.8; 29.64; 59.95 ~xg cylinder height yes
ra mm Da/2 * cyclone radius no
ri mm Dt/2 * radius of the vortex finder no
hi mm h− ht * height of the imaginary cylinder CS no
re mm ra − be/2 * mean inlet pipe radius no
F - Fe/Fi * ratio between inlet and outlet area no
Fe mm2 he × be * inlet area no
Fi mm2 π × r2i * outlet area no
ve ms−1 20 ~xp inlet velocity no
λg - 0.005 ~xp load-free friction coefficient no
µ Pa s 1.8× 10−5 ~xp viscosity no
%f kg/m3 1.2000 ~xp gas density no
%p kg/m3 2700 ~xp particle density no
croh kg/m3 0.061 ~xp raw gas concentration no
B - croh/ρf * mass load no

vi ms−1 V̇ /(πr2i ) * velocity vortex finder (outlet pipe) no

vr(ri) ms−1 V̇ /(2πri(h− ht)) * radial gas velocity on the outlet pipe no
vϕi ms−1 (rireπ)/(αFe + hireπλ) * tangential velocity at CS no

V̇ m3/h Fe × ve * volumetric flowrate through the cyclone no

λ - λg(1 + 2
√
B) * wall friction factor; friction coefficient no

DaDa

DtDt

bebe

hehe
htht

hh bebe

DaDa

DtDt

Front	view Top	view

DuDu

DuDu

hzhz

Fig. 1 Standard geometry of the cyclone considered in this
study. The corresponding geometry parameters, ~xg, are de-
scribed in Table 1.

with the following entries: inlet width be, body diam-

eter Da, diameter of the vortex finder Dt, diameter of

the dust exit Du, total height h, inlet height he, vortex

finder immersion ht, and cylinder height hz. In addition

to these geometry parameters, ~xg, the specification of

the operating parameters, ~xp, is necessary. The geome-

try and process parameter sets are shown in Table 1. We

will concentrate in this study on the collection efficiency

as specified in Löffler (1988), which will be explained in

Section 4.1.

3 Optimization via Multimodel Simulation in

the Loop

In the optimization via simulation setting, the goal is

to perform runs of the simulation model in an efficient

manner and to determine those input variables, which

result in an optimal (or near optimal) solution (Fu 1994).

The OMMS approach extends the standard optimiza-

tion via simulation setting by integrating results from

several model types. In contrast to mathematical mod-

els, which usually require some input values only, data-

driven models require the specification of input and out-

put values. To clarify the data flow and model building
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process in the OMMS approach, the following model

categories will be used:

– X-models use input parameters, e.g., geometry and

process parameters.

– XY -models use the input parameters as well as the

corresponding output values, e.g., collection efficiency.

So, the analytical (MA), CFD (MC), and 3D printing

(MP ) models are considered as X-models, whereas the

surrogate (MS) models are XY -models.

The main idea of OMMS can be summarized as fol-

lows: First, data from different X-models are collected.

Then, data-driven (XY -models) are trained, based on

the available data. These models are combined in an

ensemble approach based on stacked generalization. Fi-

nally, the combined ensemble is subject to an optimiza-

tion run, after which a promising candidate solution is

evaluated to receive new data, and the next iteration

starts. The general concept of OMMS is further illus-

trated in Figure 2. Here, we consider the optimization

of the cyclone’s geometry parameters, ~xg.

OMMS consists of the following steps:

(S-1) Select an initial design. Set t = 1, where t de-

notes the number of parameter sets. The first set of

geometry parameters, ~x
(t)
g , is generated.

(S-2) Specify the process parameters ~xp. They are not

changed during the optimization.

(S-3) Select X-models (e.g., CFD, analytical). In ad-

dition to the geometry and process parameter sets,

further parameters might be necessary for each sep-

arate model. These model specific parameters will

be referred to as ~xm. For example, the CFD simula-

tor requires the specification of parameters for heat

transfer, surface properties, damping, collision, and

radiation. These parameters are not used in other

simulation models. They are not changed during the

optimization. The set ~x(t) = (~x
(t)
g , ~xp, ~xm) will be

used to build the X-models.

(S-4) Build X-models. To build these models no in-

formation about the dependent (output) variable y

is needed. In this step, one or several models (f1,

. . ., fp) from the set of X-models, which compre-

hends 3D-printed objects, analytical model formu-

las, or CFD simulation models, are generated. The

construction process results in several models, which

use the same set of parameters ~x(t).

(S-5) Evaluate models. The X-models are evaluated,

i.e., each model generates an output: fj : ~x(t) →
y
(t)
j . Note, some models generate a deterministic

output, e.g., CFD models, whereas other, e.g., 3D-

printed models, generate stochastic (noisy) outputs.

Therefore, repeats should be considered for the stochas-

tic models, to improve the quality of the measured

values (Law 2007; Haftka et al. 2016).

(S-6) Collect results. Besides the set of pairs {(~x(k), y(k)j )},
for k = 1, . . . , t and j = 1, . . . , p, additional results

{(~x(m), y
(m)
l )}, for m = 1, . . . , s and l = 1, . . . , q,

e.g., from historical data or data from the literature,

can be used in the construction of the metamodels.

(S-7) Select XY -models. XY -models use the parame-

ter set, ~x(k) = (~x
(k)
g , ~xp) as well as the correspond-

ing output values y
(k)
i for model building, with k =

1, ..., (t+ s). In general the number of design points

(p+s) is required to be large enough to allow build-

ing reasonable models. These XY -models will be

referred to as level-0 models.

(S-8) Build metamodel. Stacking is used to build a level-

1 metamodel by combining information from sev-

eral level-0 models. The level-1 metamodel will be

referred to as MS
?. The level-1 metamodel is typ-

ically a relatively simple linear model. Instead of

stacking, a weighted combination of level-0 models

or co-Kriging can be used. If level-0 models of simi-

lar fidelity are combined, stacking is recommended.

In a mixed case, a co-Kriging model could be in-

tegrated into a stacked metamodel (i.e., as a sin-

gle level-0 model). Other ensemble techniques may

also be applicable, e.g., bagging or boosting (Mur-

phy 2012). However, stacking is very effective even

when combining only few, strong learners and it pro-

vides additional information, e.g., the contribution

of each of the combined models to the ensemble.

(S-9) Optimize on the metamodel. The model MS
? is

used as a surrogate for performing the optimiza-

tion step. The optimization results in a new set

of promising geometry parameters, which will be

evaluated in the following step. The counter for the

number of parameter sets t is incremented and the

new design can be referred to as ~x
(t)
g . Instead of in-

creasing t by one, several new design points, e.g.,

from models with different run times, can be added

to the parameter set.

(S-10) Check the termination criterion. Usually, if the

budget, i.e., simulation time, is exhausted or the

desired solution quality is reached, the process is

stopped and the result is presented.

(S-11) Store the optimized design, ~x?g. Optionally, it

can be added to a database.

4 Modeling Approaches

To exemplify the OMMS approach, four different mod-

eling approaches are described in the following: analyt-

ical (MA), surrogate (MS), CFD simulation (MC) and

3D printing (MP ) .
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Legend

(S-3)
Select X-models

(S-7)
Select XY-models

(S-1) 
Initial  design

(S-5)
Evaluate
X-models

(S-11)
Store optimized

 design

(S-4)
Build X-models 

(S-2) 
Process 

parameters

External data
(S-6)

Collect results

(S-9)
Optimize on 
metamodel

(S10)
Terminate?

Process

Parallel 
Processes

Database

(S-8)
Build metamodel 

Fig. 2 Optimization via multimodel simulation in the loop. Several simulation models are used in parallel. Elements of the first
set of models, i.e., during steps (S-3), (S-4), and (S-5), can be one or several CFD simulators, analytical models, or experiments
based on 3D-printed objects. Results from these different models are collected and optionally combined with additional results,
which were stored in a database. The second set of models is built during step (S-8). Models from the second set are classical
surrogate models, e.g., neural networks, linear regression models, or Kriging models. Because simulation results, i.e., y-values
are available at this stage of the multimodel simulation process, a broader set of models can be used than during the first steps
(S-3) to (S-5). Results from these models can be combined in several ways. We describe an approach that is based on stacked
generalization (Wolpert 1992). Optimization is performed on the stacked model (S-9). The termination criterion depends on
the user’s requirements, e.g., when the budget of evaluations is expended (S-10).

4.1 The Analytical Model (MA)

A broad variety of analytical models intended to pre-

dict cyclone separation performance exists in the liter-

ature (Löffler 1988; Overcamp and Mantha 1998; Hoff-

mann and Stein 2007). The analytical approach devel-

oped by Barth (1956) and Muschelknautz (1972) can

be considered as standard. It will be referred to as the

Barth-Muschelknautz method of modeling and denoted

as (MAB). This method is based on the assumption that

a particle carried by the vortex is influenced by two

forces: a centrifugal force and a flow resistance. They

are expressed at the outlet pipe radius ri where the

highest tangential velocity occurs. The (MAB) model is

based on the balance of forces acting on a particle that

is rotating in the cyclone. Small particles leave the cy-

clone through the vortex finder, whereas large particles

move to the cyclone wall. The cut size, x50, plays a cen-

tral role in these calculations. For cyclones, particles of

size x50 have a 50-50 chance of being captured. Smaller

particles are less likely to be captured and larger par-

ticles are more likely to be captured. Two forces act

on a particle rotating on the cylindrical control surface,

which is assumed to separate the outer region of down-

ward flow from the inner region of upward flow. These

forces are (i) the centrifugal force acting outward and



OMMS: Optimization via Multimodel Simulation 7

Table 2 Particle size distribution table. Values correspond
to the dust used in the 3D printing experiments.

Particle Size x[µm] ∆x Mean
x̃
[µm]

∆Qe(x) Cumulative

0-1 1 0.5 0.1 0.1
1-2.7 1.7 1.85 0.1 0.2
2.7-5.5 2.8 4.1 0.1 0.3
5.5-8.7 3.2 7.1 0.1 0.4
8.7-12.7 4 10.7 0.1 0.5
12.7-16.9 4.2 14.8 0.1 0.6
16.9-21.2 4.2 19 0.1 0.7
21.2-25.4 4.2 23.25 0.1 0.8
25.4-30.8 5.4 28.1 0.1 0.9
30.8-63 31.2 46.9 0.1 1.0

(ii) the Stokesian drag acting inward. By equating these

forces, Barth (1956) developed an analytical model for

the cut size x50. For a given cut size, the fractional effi-

ciency curve, Tx50(x) assigns an efficiency to the parti-

cle diameter. The overall collection efficiency E is pre-

dicted according to:

E =

∫ xmax

xmin

Tx50
(x)qe(x)dx ≈

xmax∑
xmin

Tx50
(x̃i)∆Qe(xi),

(1)

where xmin is the lower bound of the particle size, xmax

is the upper bound of the particle size, x̃i is the mean

particle size in each fraction, ∆Qe(xi) is the change in

distribution of particle sizes and qe(x) = ∆Qe(xi)/∆xi.

The particle size distribution table, which was used in

our studies, is shown in Table 2.

The collection efficiency, which is calculated using

the analytical model (MAB), will be referred to as EB .

Results from our collection efficiency calculations for

models from the literature and for models used in our

experiments are shown in Table 3 and Table 5, respec-

tively. The corresponding function is available in the R

package SPOT as funCyclone().

4.2 CFD Simulations (MC)

Computational Fluid Dynamics simulations have pro-

ven to be useful for the study of the fluid and particle

flows in cyclones (Hoekstra et al. 1999). They have clear

advantages for the understanding of the details of the

flow in cyclones, but also limitations in terms of mod-

eling cyclone separation performance accurately (Hoff-

mann and Stein 2007). Numerical simulations are per-

formed by solving the unsteady-state, three-dimensional

Reynolds averaged Navier-Stokes (RANS) equations com-

bined with a closure model for the turbulent stresses

and the large eddy simulation approach.

The CFD simulations were carried out with the open

source software OpenFOAM, which has been developed

to solve numerical problems (Konan and Huckaby 2015).

The mesh for these CFD simulations consists of approx-

imately 30,000 to 50,000 hexahedral cells. The transient

MPPICFoam solver was chosen to calculate the two-

phase flow (Euler-Lagrange). The cyclone simulation

from the OpenFOAM cyclone tutorial was used as a

basis (OpenFOAM Foundation 2016). The settings for

fvSchemes, fvSolution, transportProperties, and

turbulenceProperties were adapted to obtain the same

setup as for the 3D printing experiments. The settings

in the kinematicCloudProperties file were adjusted

to the characteristics of the used particles. The den-

sity of the particles was changed to 2, 700 kg/m3 (as

in Table 1 above). Using the generalDistribution

model, the particle distribution from Table 2 can be

mapped precisely. In the simulations, 20, 000 parcels

represent the entirety of the particles, where each parcel

has the same mass. This amount was chosen as a com-

promise between calculation time and mass per parcel.

The minimization causes a lower error when a parcel es-

capes at an outlet. The heatTransfer, surfaceFilm,

damping, stochasticCollision, and radiation sub-

models were left unchanged at the “off” state. In the

experiments, a total of 6 g was spread over 10 thrusts

and the waiting time between each thrust was approxi-

mately 3 seconds. The simulation takes only one thrust

of 0.6 g instead of performing the 10 repetitions in or-

der to avoid very long simulation times. The particle

velocity in the simulation was set to the same value as

the determined velocity of the air at the inlet. Overall,

a time frame of 3 seconds is simulated. For this, a total

calculation time of approximately 96 hours (wall-clock

time) using 16 processor cores is required. The simu-

lation was controlled by the time step and relaxation

factors and behaved relatively stable.

After each experiment, a certain amount of dust re-

mains in the cyclone. We consider dust as being sepa-

rated, when it leaves the cyclone through the dust exit

(usually at the bottom of the cyclone). The evaluation

of the simulation results is shown in column (MC) in

Table 5. If the remaining dust in the cyclone is also

considered as being separated, the collection efficiency

is increased. Collection efficiencies calculated with CFD

models (MC) will be referred to as EC .

4.3 Surrogate Modeling (MS)

Computational fluid dynamics simulations are compu-

tationally expensive. A well-known approach to handle

costly objective functions is to use data-driven XY -

models. They are referred to as response surface mod-
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Table 3 Results from analytical models (MA). Cyclone geometries taken from Hoffmann and Stein (2007). Proportions of the
geometries shown in the first three rows (Löffler, Muschelknautz, and Stairmand) were used for the 3D printing experiments.
All values were scaled by the height h0 of the real cyclone. Since the printed cyclones have an absolute height of 160 mm, the
relative values from columns three to nine are multiplied with 160. The Barth model, i.e., Eq. (1), was used to determine the
collection efficiency EB . Results from the Mothes model, which will be introduced in Sec. 6, are shown in the EM column.
Both models use the process parameters from our study and the scaled geometry parameters of the original cyclones. The
same particle size distribution (silica sand) was used for the calculations to obtain comparable results.

Type h0 [mm] he/h0 be/h0 Dt/h0 ht/h0 hz/h0 Da/h0 Du/h0 EB EM

Löffler 25,000 0.2400 0.0800 0.1680 0.2600 0.2800 0.5040 0.1680 89.3334 90.52
Muschelknautz E. 9,340 0.1852 0.0621 0.1820 0.3330 0.1852 0.7281 0.2441 89.9122 91.11
Stairmand high eff. 12,650 0.1249 0.0498 0.1249 0.1249 0.3747 0.2498 0.0941 89.0490 87.92

Muschelknautz D. 8,630 0.2167 0.0626 0.1379 0.3685 0.3036 0.4137 0.2260 89.5968 91.33
Storch 4 16,160 0.1609 0.0235 0.0724 0.1089 0.5625 0.1609 0.0563 91.4006 87.04
Storch 3 8,210 0.2034 0.0731 0.1303 0.2436 0.5627 0.2339 0.1121 86.9871 88.29
Storch 2 10,970 0.1714 0.0483 0.0985 0.2179 0.4230 0.2051 0.0766 89.6379 90.37
Storch 1 19,430 0.0515 0.0515 0.0633 0.0726 0.2820 0.1879 0.0329 92.4774 89.49
Tengbergen C 9,300 0.1075 0.1075 0.1204 0.1559 0.2011 0.3624 0.1204 90.4930 92.16
Tengbergen B 6,040 0.2964 0.0927 0.1854 0.3709 0.5364 0.3477 0.1854 83.8606 87.45
Tengbergen A 6,470 0.2087 0.1144 0.1731 0.2427 0.2782 0.4281 0.3122 87.7651 89.80
TSN -11 9,590 0.1919 0.0563 0.1418 0.2523 0.2284 0.3629 0.1606 89.3807 90.58
TSN -15 11,240 0.1477 0.0534 0.1406 0.3114 0.5240 0.2367 0.1059 86.6353 89.50
Stairmand high flow 7,550 0.1868 0.0940 0.1868 0.2185 0.3748 0.2517 0.0940 81.2173 84.33
Van Tongeren AC 12,310 0.1210 0.0544 0.0812 0.2640 0.3542 0.2640 0.1056 92.1290 91.25
Vibco 7,200 0.1542 0.1250 0.1542 0.1722 0.3167 0.3972 0.0917 88.6851 90.47
Lapple GP 11,310 0.1247 0.0628 0.1247 0.1565 0.5004 0.2502 0.0628 88.8657 89.01

els or surrogate models (Jin 2003; Kleijnen 2008). That

is, data-driven surrogate models may be constructed

based on experimental results. Then, an optimization

algorithm can search on the cheap surrogate model in-

stead of using the expensive CFD simulations.

For the purpose of demonstration, we provide an

example by training a simple surrogate model. Here,

we have chosen a standard linear regression model, be-

cause it is available out-of-the-box. It models the esti-

mated collection efficiency as a function of 17 different
geometries, which were specified in Table 3. The data

that were used to fit the surrogate model are based on

the the analytical model (M-AB) developed by Barth

(1956) and Muschelknautz (1972). The estimated col-

lection efficiencies that were calculated using the surro-

gate model (linear regression model) will be referred to

as ES .

ES = 95.56− 0.58Dt + 0.11Da. (2)

This linear regression model was reduced from a full

model considering he, be, Dt, ht, and Da with vari-

able selection based on stepwise model reduction using

the Akaike information criterion (AIC). The parameters

Du and hz are not present because they are not con-

sidered by the analytical model. The parameter h was

removed as it is constant (due to the constant height

of the 3D printed cyclones). The model reduction via

AIC yielded only two remaining parameters, which may

mostly be due to the small size of the training data set.

The available 17 samples do not seem to allow for con-

cluding much about the removed parameters. Either,

the data set explores these values insufficiently, or else,

their relation is non-linear and hence not detected by

the model. The parameters that were removed based on

the stepwise model reduction are not necessarily with-

out influence. In fact, they are known to influence the

behavior of cyclones in practice. However, based on the

available data as well as the chosen linear model, their

influence on the measured performance indicator can
not be determined with any confidence. The diameter

of the vortex finder, Dt, and the cyclone body diameter,

Da, have a significant effect on the collection efficiency.

Although this model already shows good accuracy, with

an adjusted R-squared of 0.94 estimated on the same

data that was used to fit the model), more sophisticated

linear models or Kriging models can be fitted (Turner

et al. 2013; Kleijnen 2014). Optimization can be per-

formed on this model, e.g., to improve the collection ef-

ficiency for a given pressure drop. Even multi-objective

optimization techniques can be applied (Elsayed and

Lacor 2012; Zaefferer et al. 2014).

4.4 3D-printing Model (MP )

The experiments with the 3D-printed cyclones used stan-

dard laboratory equipment: Erlenmeyer flask, stand,

pressure gauge, precision scale, and a vacuum cleaner.

To ensure comparability and interchangeability of the
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Fig. 3 Three printed cyclone models, which were used with
three different ht values in the (MP ) experiments. From left
to right : Löffler, Muschelknautz, Stairmand. See Table 4.

results, the same design and process parameters as in

the other modeling approaches were used for the 3D-

printing models. Table 4 shows the parameters of the

printed cyclones. The process parameters, ~xp, are de-

scribed in Table 1. The model building step (S-4 in

the OMMS approach) consists of the (i) 3D computer

model generation and the (ii) printing step. The 3D

models, described in the STereoLithography, Standard

Tessellation Language (STL) are created using a Python

script, which uses the FreeCad Python library.1 The

model was exported to an STL file, which can be inter-

preted by a large number of 3D printers. The printed

cyclone models are shown in Figure 3.

Today, a broad variety of 3D printers as well as dif-

ferent materials are available. The printing technique

as well as the materials have to meet certain require-

ments. The cyclone has to be robust, because it is held

in a fixed position and has to withstand the flow of

air and dust. Due to the hollow shape of the cyclone,

a ProJet CJP 660pro printer was chosen, which uses

gypsum powder (Visijet PXL) as printing substrate.

The entire cyclone was printed in one step. The gypsum

powder has to be hardened after surplus gypsum pow-

der has been removed from the interior. Cyan acrylate

(“ColorBon”) was used to avoid electrostatic charging.

It produces a sufficiently smooth surface and improves

the stability. The experiments were performed at room

temperature. Significantly higher temperatures may re-

quire a different choice of material. Printing a single

cyclone model takes about three hours, plus one hour

for refinishing, dust removal, and infiltration, and one

additional hour for curing.

Besides the selection of a printer and material, the

characteristics of the dust have to be selected. The dis-

1 http://www.freecadweb.org

tribution of particle sizes should not vary to prevent

fluctuations in the results. If the particles are too large,

they may be too easy to separate from the gas. If there

are too many, they may even block the flow inside the

cyclone. If the particle size is too small, the particles

cannot be separated. The chosen dust is silica sand with

a maximal particle size of 63µm. Its particle size distri-

bution is shown in Table 2. Collection efficiency calcu-

lated using 3D-printed cyclones (MP ) will be referred

to as EP .

5 Single Models: Experimental Results

An experimental design was set up to measure the ef-

fects of the cyclone shapes and the outlet pipe immer-

sion ht on the collection efficiency EP in the 3D print-

ing (MP ) experiments. Three different values for the

immersion of the outlet pipe (ht = 0, 35, 44 mm) were

chosen for each of the three cyclone geometries (Löffler,

Muschelknautz, and Stairmand), see Figure 3. Since ev-

ery experiment was repeated five times, altogether 45

experiments were performed. Measurements with un-

usual collection efficiency values were considered as out-

liers. For example, an efficiency value larger than 100%

was probably a result of insufficient cleaning of the cy-

clone between tests, because these outliers occurred at

the beginning of every series of tests. Results from these

experiments are shown in column (MP ) in Table 5.

Figure 4 shows boxplots, which visualize the col-

lection efficiencies of the three different cyclones and

outlet pipe immersions. As can be seen in Figure 4, the

median of the collection efficiency values of the Löffler
cyclone is lower than 90%, whereas it is larger than

90% for the Muschelknautz and Stairmand cyclones.

According to the (MP ) column in Table 5, the Stair-

mand cyclone has the highest average efficiency. The

efficiency at every immersion value is higher than the

previous two cyclones with the same outlet pipe im-

mersions. Furthermore, results from the Stairmand cy-

clones are more robust, i.e., smaller variances, than re-

sults from the other two cyclones. A very small outlet

pipe immersion value (0 mm) results in a reduced col-

lection efficiency as can be seen in Figure 4. This result

could be observed consistently for all cyclone types. The

results from the 3D printing experiments can be sum-

marized as follows: (i) there are high variances in the

measured values, and (ii) the experimental results in-

dicate that the collection efficiency, EP , increases with

increasing vortex finder immersion, ht, values.

Due to the complex nature of the lab experiments,

the MP results were subject to inaccuracies. While 3D

printing reduces the cost of experiments significantly
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Table 4 Geometries, i.e., ~xg values, of the 3D printed cyclones shown in Figure 3. A total height, h of 160 mm was chosen.
This table shows absolute values, which were determined using the relative values from Table 3 multiplied by 160.

Type be Da Dt Du h he ht hz

Löffler 12.8 80.64 26.88 26.88 160 38.4 0 44.8
Löffler 12.8 80.64 26.88 26.88 160 38.4 35 44.8
Löffler 12.8 80.64 26.88 26.88 160 38.4 44 44.8
Muschelknautz E. 9.92 116.48 29.12 39.04 160 29.6 0 29.64
Muschelknautz E. 9.92 116.48 29.12 39.04 160 29.6 35 29.64
Muschelknautz E. 9.92 116.48 29.12 39.04 160 29.6 44 29.64
Stairmand high eff. 7.97 39.97 19.98 15.04 160 19.98 0 59.95
Stairmand high eff. 7.97 39.97 19.98 15.04 160 19.98 35 59.95
Stairmand high eff. 7.97 39.97 19.98 15.04 160 19.98 44 59.95

Table 5 Estimated collection efficiencies from five different modeling approaches: EM (Mothes), EB (Barth-Muschelknautz),
EC (CFD), EP (3D-printed cyclones), and ES (surrogate model) for three different cyclone types and three different outlet
pipe immersions (ht). The 3D-print column (EP ) shows mean (and standard deviation) from five repeats. Obvious outliers
were removed. The Mothes model (MAM ) requires outlet pipe immersion values ht > 0. The values shown in column ES(MS)
are based on the simple linear regression model from Eq. (2).

Type ht EM EB EC EP ES

Löffler 0 - 90.19 88.57 86.80(±4.39) 89.80
Löffler 35 90.45 89.49 90.91 92.13(±5.12) 88.95
Löffler 44 90.54 89.27 90.19 90.84(±3.84) 88.73
Muschelk. 0 - 91.14 82.04 88.50(±8.24) 92.13
Muschelk. 35 91.02 90.37 82.55 93.67(±2.17) 91.28
Muschelk. 44 91.07 90.15 82.43 92.87(±2.94) 91.06
Stairmand 0 - 89.44 91.20 90.53(±5.68) 88.79
Stairmand 35 89.34 88.70 95.95 94.29(±1.34) 87.93
Stairmand 44 90.57 88.45 95.60 95.50(±2.50) 87.71
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Fig. 4 Collection efficiencies EP (in %) of the the three dif-
ferent cyclones (left: Löffler, Muschelknautz, Stairmand) and
geometries (right: 0, 35, 44 mm) used in the (MP ) experi-
ments. The boxplots indicate that collection efficiency might
be improved if Stairmand cyclones and an increased ht value
are used. Thick bars indicate the median values.

compared to full-scale simulations, the experiments them-

selves are still time-consuming and require material re-

sources. With the cost of experiments, noise of evalua-

tion (due to manufacturing as well as measurement in-

accuracies), and the inherent complexity of the search-

space due to its combinatorics, the modeling based on

3D-printed cyclones poses a major challenge. Due to

these technical difficulties and the complexity of the

experimental setup, the (MP ) results presented in this

study are not conclusive yet. Problems related to the

high variance in the (MP ) model can be reduced by im-

proving the experimental procedure, e.g., by enhancing

the cleaning process between the experiments. However,

even if the data itself does not enable to draw reliable

conclusions for the design of an optimal cyclone geom-

etry, they are suitable to demonstrate the OMMS ap-

proach.

In addition to the discussion of the results from the

3D printing experiments, we consider results from the

CFD simulations. The experimental CFD results indi-

cate that the collection efficiency is worst if the vortex

finder immersion values are zero. This mostly agrees

with the findings for the 3D-printed cyclones.

In contrast to the results from the other models,

data from the analytical model (MAB) show a neg-

ative effect of the immersion length, ht, on the effi-

ciency: smaller ht values result in an increased collec-

tion efficiency EB , cf. Table 5. Further calculations re-

vealed, that this is a systematic error in the Barth-

Muschelknautz method of modeling. To fix this error,
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we implemented an additional analytical model, which

was developed by Mothes (1984). This model and its

collection efficiencies will be referred to as MAM and

as EM , respectively. The Mothes model partitions the

cyclone into regions. Differential equations are used to

model diffusive interchange between neighboring regions.

Details are described in Hoffmann and Stein (2007).

The corresponding values can be found in Table 3 (col-

umn EM ). If the Mothes model is used, larger ht values

result in an increased collection efficiency. Because the

other models (CFD and 3D printing) support this re-

lationship, the Mothes model is preferred to the Barth

model in the reminder of this study. Note, the Mothes

model is not able to calculate the collection efficiency

if ht equals zero. However, this constraint is of minor

practical relevance. Using the Mothes model changes

the coefficients of the linear model presented in Eq. 2.

The modified equation reads EM = 90.40 − 0.25Dt +

0.08Da.

6 Metamodel-based Optimization and Stacking

The metamodeling is performed in two steps. First, a

set of surrogate models has to be chosen in step (S-

7) of the OMMS approach. These models will be de-

noted as level-0 models. They are combined in a second

step, which is step (S-8) of the OMMS approach. To

combine the level-0 models, stacking is used. Stacking

can be seen as a “more sophisticated version of cross-

validation” (Wolpert 1992). Cross-validation selects the

best of a set of models based on their estimated error,

whereas stacking combines the models. Stacking parti-

tions the available training data set into training and

test data subsets. The quality of predictions from mod-

els using the training data subsets, the so-called level-0

models, can be evaluated with the test data subsets.

For each of the k hold-out subsets, the level-0 mod-

els are trained on the remaining data and are used to

predict on the hold-out data. For the purpose of com-

bining the level-0 models, stacking trains a so-called

level-1 model, which receives the predicted values of

each level-0 model instance, and the corresponding true

values from the hold-out data as observations. Thus,

the level-1 model combines the level-0 models, at the

same time trying to minimize their combined error. The

pseudo code in Algorithm 1 explains the employed im-

plementation of the training of the stacking ensemble.

Once the stacking ensemble (which includes level-0 and

level-1 models) is trained, predictions for new data can

be made as follows. For each model type, the trained

level-0 models from the k folds are combined by aver-

aging their predictions. The average prediction of each

model type is then fed into the level-1 model to produce

the ensemble prediction. For further details on this, the

reader is recommended to read Wolpert’s seminal pa-

per (Wolpert 1992). The source code of the ensemble

procedure is also publicly available.

During our experiments, stacking was performed with

the freely available R package SPOT (sequential pa-

rameter optimization toolbox ).2 It provides several tools

for the analysis and optimization of complex problems

(Bartz-Beielstein et al. 2005). The SPO function build-

EnsembleStack implements the metamodel building step

(S-8).

ALGORITHM 1: Training procedure for stacking as
implemented in the buildEnsembleStack function of the
SPOT package. The following variables are used: number of
folds: k, number of data samples: n, input data: x, out-
put y, number of ensemble models: p. “modelL0” denotes
the level-0 model, e.g., random forest or Kriging, whereas
“modelL1” denotes the level-1 model, e.g., a linear regres-
sion model.

begin
Generate k-fold data split s
comment: Fit p level-0 models:
for j := 1 to p step 1 do

comment: For each of k folds of the data:
for i := 1 to k step 1 do

comment: Exclude current fold from training data
xt := x[s 6= i, :];
yt := y[s 6= i];
comment: Fit j-th modelL0
fit0[j][i] := modelL0[j](xt, yt);
comment: Predict excluded data
yhat [s = i, j] := predict(fit0[j][i], x[s = i, :]);

od
od
comment: Fit modelL1 on results from all models & folds:
fit1 := modelL1(ybar, y)

end

As level-0 models, a simple regression model (lm),

a random forest (rf), and a Kriging (kr) model were

used in this study. For each of the k folds, these models

are trained as usual, e.g., via ordinary least squares

(lm), or maximum likelihood estimation (kr). A linear

regression model (lm) trained by ordinary least squares

is also used as a level-1 model. The metamodel M?
S

from step (S-8) in the OMMS approach can be used

to optimize the geometry parameters ~xg. This level-1

model, which combines results from the level-0 models,

uses the following coefficients:

Ensemble:− 51.38 + 0.40 lm + 0.92 rf− 0.90 kr, (3)

2 Source code and data for performing experiments from
this study are available at http://www.gm.fh-koeln.de/

~bartz/bart16e. The open source R software package SPOT
can be downloaded from https://cran.r-project.org.
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Fig. 5 Optimization on the metamodel (S-9). Barplot of the
optimized geometry parameters. Comparing lower and upper
bound of decision space with optimum. All values are pre-
sented as ratios, relative to the indicated parameters, because
the bounds have to be specified as ratios.

i.e., the stacked model uses mainly the information from

the rf and kr surrogate (level-0) models, and includes

information from the lm surrogate model to a lesser

amount as well. This result was obtained by training

all three level-0 models repeatedly on 10 folds of the

80 sample data set. Hence, each level-0 model instance

was trained with 70 training data samples. The training

data stems from the earlier described sources: analyti-

cal models, CFD models and 3D-printing experiments.

Note, that further data-sources can easily be integrated

into the data-set. Also, the ensemble model could easily

be extended by a larger set of data-driven surrogates.

After generating an objective function from the fit,

an optimizer can be applied (S-9). In our example, dif-

ferential evolution was used, but any other optimizer is

applicable. Results from the optimization are as follows:

he = 0.0938, be = 0.0938, Dt = 0.1808, ht = 0.2068,

hz = 0.2799, Da = 0.2436, Du = 0.0916. All values

are relative to the cyclone height h0 = 160 mm. This

geometry results in an estimated efficiency of 93.69 %.

Notably, the estimated efficiency of the proposed

solution (ES = 93.69) is lower than some of the single-

model results for the cyclone variants shown in Table 3.

This inconsistency is probably caused by noise in the

real-world experiments and impreciseness of the mod-

els. The optimization results are compared to the search

bounds in Figure 5. This figure illustrates the recom-

mendations from the optimization on the metamodel.

For example, the proposed solution requires intermedi-

ate diameters for the dust outlet, Du, and the immer-

sion depth, ht. The diameter of the vortex finder, Dt,

is close to the maximum possible value. On the other

hand, the body diameter, Da, is rather low. If the opti-

mization budget is not exhausted, these recommenda-

tions can be used to print a new cyclone or to perform

a CFD simulation and start the next iteration of the

OMMS loop.

The validation of the accuracy of the stacked model

is an inherent bootstrap problem, because the true col-

lection efficiency is unknown. This also applies to the

quantification of the improvement. As a possible solu-

tion, results obtained from the metamodel-based op-

timization could be compared to randomly generated

parameter configurations. Since there is no data about

the real-world collection efficiency of the proposed cy-

clone geometries available, existing results could be in-

terpolated or long-running CFD simulations could be

considered as the “ground truth”.

However, there are two reasons why the CFD sim-

ulation can be a problematic choice for validation pur-

poses. First, CFD simulations can only approximate the

behavior of real cyclones and may miss important ef-

fects. Secondly, due to the high computational cost, the

corresponding CFD simulation data is very sparse and

hence problematic to be used for validation purposes.

Reasonable artificial test functions that approximate

the behavior of problems with different data sources

(here: CFD, analytical, 3D-printing) are also not easily

available.

While it would be possible to simply estimate qual-

ity on some hold-out data (from all combined data

sources), this does not provide an estimate of the model

with respect to the actual real-world performance.

7 Conclusion and Outlook

7.1 Summary

This paper can be seen as a proof-of-concept for the

OMMS approach, which combines results from several

different modeling approaches. One important research

question that we attempted to answer was: Are there

any benefits in combining different modeling approaches

and can the weakness of one approach be compensated

by other approaches? While the OMMS approach has

theoretical merit, this question cannot be conclusively

answered based on the numerical experiments described

in this study.

This is owed to the fact, that problems occurred

during the data collection with the 3D-printing model

(MP ) and the analytical model (MAB). Potential solu-

tions to these problems were discussed in Sec. 5. These
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problems occur during the data generation process (ex-

periments, S-1) and not during the OMMS core proce-

dure (stacking, S-7 and S-8). Such problems affect most

methods that are driven by experimental procedures.

The proposed OMMS methodology improves the

robustness of the optimization, accelerates the optimi-

zation-via-simulation process, and provides a unified

approach. These benefits will be outlined in the fol-

lowing.

Robustness. First results, i.e. the interpretation of

the improved values from the OMMS as shown in Fig-

ure 5, indicate that the weakness of one approach can

be compensated by other approaches. The stacking pro-

cedure also enables OMMS to avoid deterioration of

model quality due to selection of models with poor

quality (Wolpert 1992). Our observations are in line

with results from Goel et al. (2007), who use the best

or a weighted average surrogate model instead of indi-

vidual surrogate models. They demonstrate that “using

an ensemble of surrogate models can improve robust-

ness of the predictions by reducing the impact of a poor

surrogate model (which may be an artifact of choice of

design of experiment or the inherent unsuitability of the

surrogate to the problem)”. An experimental study per-

formed by Bartz-Beielstein (2016) indicates that these

results also apply to stacking, which is used in the

OMMS approach. Obviously, if the model information

does not reflect the behavior of the true system at all,

stacking cannot fix this problem. But this is a general

problem, which affects every modeling approach.

Acceleration. The combination of several modeling

approaches in a single loop can be time consuming. So,

one might ask: “What is the advantage of doing so?” In

practice, the main costs will be caused by complex sim-

ulations (CFD) as well as real-world or lab experiments

(here: 3D printing). These results have to be integrated,

as they are the only trustworthy way to gather infor-

mation. Because the running times of the OMMS eval-

uations are negligible compared to the run time of the

CFD simulator, OMMS provides an effective and effi-

cient approach to find improved cyclone geometries. A

single CFD simulation took approximately three days,

whereas the OMMS runs require a few seconds. If costs

are measured in run time, OMMS significantly accel-

erates the optimization.

Unified Approach. In practice, there may be situa-

tions where one model is preferred to the other. But

often, it may be unclear which model is closer to the

real system: CFD simulations may fail to account for

certain complexities of the real system (e.g., potential

chemical reactions) while lab experiments will depend

on some down-scaled system. Both may hence have dif-

ferent inaccuracies with respect to different aspects of

the system. Therefore, we argue that they should com-

plement each other. That is the reason why they are

ultimately combined with an ensemble approach. The

stacking approach is also conceptually attractive, be-

cause it is a single, unifying approach. The failure of

one level-0 model is not critical for creating good pre-

dictions. And, ensembles do not require much parame-

ter tuning.

Stacking allows the transfer of knowledge from the

ensemble back to a simpler model. In the context of

machine learning, Bucila et al. (2006) demonstrate how

to compress the knowledge in an ensemble into a single

model (Hinton et al. 2015).

7.2 Future Research

Investigations about the capability of a combination of

surrogate models to deal with noise are of great interest.

We employed three individual level-0 model types (ran-

dom forest, Kriging, and a linear model) and a linear

model as a level-1 model. Random forest uses bagging,

which is a model averaging approach and relatively ro-

bust against noisy data and outliers. So are linear mod-

els, which nonetheless may be deteriorated if strong out-

liers are present. In such cases, robust linear regression

might be more appropriate. Finally, Kriging is able to

incorporate noise via the so-called nugget effect, which

allows Kriging to smoothen rather than interpolate the

data. Regarding the level-1 model, the situation is not

so clear, because interactions between these diverse sets

of models with different features are very complex. Fur-

thermore, there is not only one type of noise. Therefore,

concluding remarks about the effect of noise are beyond

the scope of this study and will be subject of further

research.

Another issue that may be subject to further re-

search is the level-1 model of the stacked regression en-

semble. As shown in Eq. 3, the coefficients of the Krig-

ing and the random forest model have opposite signs.

The interpretation of this observation is difficult. Previ-

ous research showed that restricting the coefficients of

the linear level-1 model to non-negative values can pro-

duce better results (Breiman 1996; LeBlanc and Tibshi-

rani 1996). Further improvements are possible by re-

stricting coefficients to sum up to one. This will also

improve the interpretability, as it may more easily pro-

vide a link between coefficients and the importance of

a single level-0 model for the ensemble.

Because of the technical difficulties of the 3D-printing

models, alternative model combinations, which include

several analytical models, can be recommended. Instead

of using the five models from our study, we will combine



14 Thomas Bartz-Beielstein et al.

one CFD model with several analytical and surrogate

models.

On the basis of the observations in this article, we

believe that the novel OMMS approach may be suc-

cessfully used for many applications in the field of opti-

mization-via-simulation. Last but not least, it should

be noted that OMMS cannot be applied without any

modifications to every optimization problem. It has to

be adapted to the particular application, e.g., cyclone

geometry optimization. We do not claim that OMMS

outperforms all other algorithms on every problem class.

This is a consequence of the no free lunch theorem (Wol-

pert and Macready 1997; Haftka 2016).
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