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| |
Your Instructors Today Questions
» Dr.Thomas Bartz-Beielstein is a professor for Applied Mathematics at Cologne Q-1: How to generate test problems?
University of Applied Sciences. He has published more than several dozen research Q-2: How to generalize results?

papers, presented tutorials about tuning, and has edited several books in the field of
Computational Intelligence.

> Martin Zaefferer is a research assistant at Cologne University of Applied Sciences.
His research interests include computational intelligence, applications of knowledge
discovery as well as simulation and model based optimization.

> Dr. Boris Naujoks is one of the leading scientists on multi-criteria decision making
in Germany. He managed different projects in applying evolutionary multi objective
optimization techniques in different real-world applications from airfoil design in
aerospace industry to vehicle routing problems in logistics.
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Benchmarking: Features

» Difficult to solve using simple methods such as hill climbers
» Nonlinear, non separable, non symmetric
» Scalable with respect to

> problem dimensionality
> evaluation time

» Tunable by a small number of user parameters
See.e.g, [4]

(-] 0.0
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Benchmarking: Open Questions

» Algorithms are trained for this specific set of benchmark functions
> Who defines this set of functions?
> Fixed set of test data?
> In practice, | do not need an algorithm which performs good on a set of test
problems (which was developed by some experts)

v

Really wanted:

> An algorithm, which performs very good on my set of real-word test problems
> Not only demonstrating
» Understanding!

> Let's have a short look at the problem

(-] 0.0
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Benchmarking: Current Situation

» Authors report parameter values which seem to work reasonably well

» Each algorithm will be run for some number, say ten, on each problem.
Statistics are reported, e.g., mean, standard deviation

» One expert compares his new algorithm with establishes approaches.
Subjective (unfair?) comparison

» Many experts compare their algorithms on several, standardized data.
Objective (fair) comparison

» Use accepted data bases, e.g., UCI

» Divide data into train, validation, and test data

» What is the problem of this approach?

(-] 0.0
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M

Pl Problem Classes and Instances

A Taxonomy of Algorithm and Problem Designs

» Classify parameters

» Parameters may be qualitative, like for the presence or not of an
recombination operator or numerical, like for parameters that assume real
values

» Our interest: understanding the contribution of these components
» Statistically speaking: parameters are called factors
» The interest is in the effects of the specific levels chosen for these factors

(-] 0.0

Tutorial: meaningful and generalizable results July 2013 8/ 97



Problem Classes and Instances

Problems and Algorithms

single
algorithm

single
problem

multiple
algorithms

single
problems

( single
algorithm
multiple
problems

multiple
algorithms
multiple
problems

» How to perform comparisons? °
» Adequate statistics and models? 00 ©
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» MASP
» Several optimization algorithms are compared on one fixed problem instance m
> Experiment: collect sample data Yi,..., Yr (independent, identically
distributed)

> Goal: comparison of algorithms on one (real-world) problem instance 7
> No generalization
» SAMP
> Generalization!
» Goal: Drawing conclusions about a certain class or population of instances I1
> This is Q-1: How to generate a population of problem instances?

(-] 0.0
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[ Il sAsP

SASP: Algorithm and Problem Designs

» Basic design: assess the performance of an optimization algorithm on a single
problem instance m

» Randomized optimization algorithms = performance Y on one instance is a
random variable

» Experiment: On an instance 7 algorithm is run r times = collect sample data
Yi,...,Y; (independent, identically distributed)

> One instance , run the algorithm r times = r replicates of the performance
measure Y, denoted by Yi,..., Y,

» Samples are conditionally on the sampled instance and given the random
nature of the algorithm, independent and identically distributed (i.i.d.), i.e.,

py, - yelm) = [ ploslm)- 1)
j=1

(-] 0.0
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Overview

Test Problem Generators

> Artificial

» Natural

» Three fundamental steps for generating natural problem instances, namely
Describing the real-world system and its data
Feature extraction
Instance generation

(-] 0.0
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Natural Problem Classes

Example: Test Problem Generators

Describing the real-world system and its data
Classic Box and Jenkins airline data [2]
Monthly totals of international airline passengers, 1949 to 1960

> str(AirPassengers)

Time-Series [1:144] from 1949 to 1961: 112 118 132 129 121 135 148 148 136 119 ...

(-] 0.0
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Natural Problem Classes

Example: Test Problem Generators

Instance generation

HW parameters «, /3, and v are estimated from original time-series data Y;
To generate new problem instances, these parameters can be slightly modified
Based on these modified values, the model is re-fitted

Extract the new time series. Here, we plot the original data, the Holt-Winters
predictions and the modified time series.

(-] 0.0
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S AR eRtesgl  Natural Problem Classes

Example: Test Problem Generators

» Feature extraction based on methods from time-series analysis

» Multiplicative Holt-Winters (HW) prediction function (for time series with

period length p) is
Yern = (ac + hbe)St—pi1(h-1) mod ps
where a;, b; and s; are given by

ar = a(Ye/st—p) + (1 — a)(ar—1 + br1)
b = ﬁ(at - a»:—1) + (1 - ﬁ)br—l
S5t = ’7’( Yt/at) + (1 - ’7)51—;:

» The optimal values of «, # and ~ are determined by minimizing the squared

one-step prediction error

(Cologne) Tutorial: meaningful and generalizable results

Natural Problem Classes

Example: Test Problem Generators

generateHW <- function(a,b,c){
## Estimation
m <- HoltWinters(AirPassengers, seasonal = "mult")
## Extraction
alpha0<-m$alpha
beta0O<-m$beta
gammaO<-m$gamma
## Modification
alphal <- alphaO+a
betal <- betaO*b
gammal <- gammaO*c
## Re-estimation
mi <- HoltWinters(AirPassengers, alpha=alphal
, beta = betal, gamma = gammal)
## Instance generation
plot (AirPassengers)
lines(fitted(m)[,1], col = 1, lty=2, 1lw=2)
lines(fitted(m1)[,1], 1ty = 3, 1w =2, col = 2)

generateHW(a=.05,b=.025,c=.5)

(Cologne) Tutorial: meaningful and generalizable results
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[Nl Natural Problem Classes

Example: Test Problem Generators

AirPassengers
w00 S0 600

300

200

100

T T T T
1950 195 1954 1956 1958 1960

Time.

» HW problem instance generator: solid line: real data, dotted line: predictions
from the Holt-Winters model, fine dotted red line: modified predictions

(-] 0.0
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[Nl Artificial

Example: GLG Instance

» The following parameters can be used to specify the GLG generator
» The number of Gaussian components m
The mean vector u of each component
The covariance matrix X of each component
The weight of each component w;
A maximum threshold t € [0; 1] can be specified for local optima and the
fitness value of the global optimum G*. Local optima are randomly generated
within [0; t X G”]
» The following tuple can be used to specify an GLG generator:

vYVvy

MN:=([-c,c]",n,m, D, {Ds},{t,G*}), (2)

where ¢ € R defines the boundary constraints of the search space, n the

search space dimensionality, m the number of Gaussian components, D,, the

distribution used to generate the mean vectors of components, Dy the

distribution or procedures used to generate covariances of components,

t € [0; 1] the threshold for local optima, and G* the function value of the

global optimum °
00 O
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Artificial

Example: Artificial Test Problem Generators

» Gallagher and Yuan present landscape test generator Max-Set of Gaussian
Landscape Generator (GLG) [4]

» Problem instances for continuous, bound-constrained optimization problems
» Uses m weighted Gaussian functions

G(x) = max (wgi(x)),

i€1,2,...,m

where g : R” — R denotes an n-dimensional Gaussian function

() = (W exp (_%(X S M)T>>1/n,

jt is an n-dimensional vector of means, and X is an (n x n) covariance matrix

> Mean of each Gaussian corresponds to an optimum on the landscape and the
location of all optima is known
> Global optimum is the one with the largest value

(-] 0.0
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Artificial

Example: GLG Instance

» Based on Eq. (2), we have specified the following GLG landscape generator
for our experiments:

M= ([~ 12, 2,20,U[~1; 1], {¢4[0.05; 0.15], U[ 7 /4, 7 /4]}, {0.9,10})
3

> Mean vector of each component is generated randomly within [—1, 1]?
» Covariance matrix of each component generated with the procedure Ds in
three steps:
A diagonal matrix S with eigenvalues is generated
An orthogonal matrix T is generated through n(n — 1)/2 rotations with
random angles between [—m /4, /4]
The covariance matrix generated as T'ST

» The weight w; of the component corresponding to the global optimum is set
to 10 while other weights are randomly generated within [0;0.9]

» Nine problem instances, 7; € My, (i = 1,...,9), see Fig. 1, generated with
this parametrization

(-] 0.0
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Evolution Strategy Evolution Strategy
Parameter  Symbol Name Range Value
@ initialization mue 1 Number of parent individuals N 5
and evaluation nu v =MA/p  Offspring-parent ratio Ry 2
test for termination e mating selection sig_malnit o,@) Initial standard deviatior_15 ) Ry 1
© (©) nSigma Ny Number of standard deviations. d  {1,d} 1
denotes the problem dimension
X cr Multiplier for mutation Ry 1
environmental -
selection @ recombination tau0 R: 0
replacement crossover tau Ry 1
rho p Mixing number {1, n} 2
(€] (6] sel K Maximum age R 1
- ) +
evaluation mutation mutation Mutation {1,2} 2
sreco ry Recombination: strategy vars {1,2,3,4} 3
oreco ry Recombination: object vars {1,2,3,4} 2
00.0 00.0
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Case Study: SAMP
SAMP: Fixed Algorithm and Randomized Problem Designs SAMP-1: Problem Instances
» SAMP-1: Algorithm and Problem Instances > Nine problem instances, which were randomly drawn from an infinite number
» SAMP-2: Building the Model and ANOVA of instances: fSeed
» SAMP-3: Validation of the Model Assumptions
» SAMP-4: Hypothesis Testing
» SAMP-5: Confidence Intervals and Prediction ’
Figure : Three test problem instances from 11, which were generated with the GLG
landscape generator as specified in Eq. 3.
00.0 00.0
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SAMP-1: Algorithm and Problem Instances SAMP-2 Building the Model and ANOVA

» ES, run r =10 times on a set of randomly generated problem instances » Linear statistical model
'data.frame': 90 obs. of 4 variables: i=1
$y : num  0.20749 0.26074 0.00134 0.23667 0.38032 ... Y,-j =p+T1i+ej L q (4)
$ yLog : num -1.573 -1.344 -6.614 -1.441 -0.967 ... Jj=1...r,
$ algSeed: Factor w/ 10 levels "123","124","126",..: 1 23456 7 8 9 10 ...
$ fSeed : Factor w/ 9 levels "1","2","3","4",. .: 1111111111 ... where 4 is an overall mean and ¢j; is a random error term for replication j on
instance i
» Note, in contrast to the fixed-effects model, 7; is a random variable
representing the effect of instance /
» The stochastic behavior of the response variable originates from both the
instance and the algorithm
> This is reflected in (4), where both 7; and ¢;; are random variables
> The model (4) is the so-called random-effects model, cf. [5, p. 512] or [3,
p. 229].
(J (J
00 o 00 o
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Case dy: SAMP
SAMP-2: The classical ANOVA SAMP-2: The classical ANOVA
» Similar to classical ANOVA: variability in the observations can be partitioned
into a component that measures t.he. varla'tlo.n between treatments and a Table : ANOVA table for a one-factor fixed and random effects models
component that measures the variation within treatments
. . . Source Sum Degrees Mean EMS EMS
» Based on ANOVA identity SSiotal = SS SSerr, We define . .
Y orotal treat e of Variation of Squares of freedom Square  Fixed Random
MS. _ SStreat _ rzfjl(yi. - Y)z Eq )
treat — -
e qg-1 qg—1 ’ Treatment SSireat g-—1 MSieat 02+ q’le' 02 +ro?
q A Error SSerr q(r—1) MSere o? o2
MSer = SSerr _ L=l ijl( U ) Total SStotal qr—1
q(r—1) q(r—1) ‘
» It can be shown [5] that » Expected mean squares differ
E(MSyeat) = 0% +ro?  and  E(MSe,) = 02, (5)

» Estimators of variance components

Mstveat — Mserr

: ) .

00 0 00 o

62 = MSerr and 2 =
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>

>

SAMP-2: ANOVA Calculations in R (1/2)

Extract mean squared values MSA (treatment) and MSE (error) from
ANOVA model

Calculate estimators of variance components from (6): 62 as the mean
squared error and the second component 42

> samp.aov <- aov(yLog “fSeed, data=samp.df)

> (M1 <- anova(samp.aov))

Analysis of Variance Table

Response: yLog
Df Sum Sq Mean Sq F value Pr(>F)
fSeed 8 87.28 10.9102 2.6143 0.01346 *
Residuals 81 338.03 4.1733
Signif. codes: 0 '#**' 0.001 '#*' 0.01 'x' 0.05 '.' 0.1 ' ' 1
> (MSA <- M1[1,3])
[1] 10.91023
> (MSE <- M1[2,3])
[1] 4.173264
> r <-length(unique(samp.df$algSeed)); q <- nlevels(samp.df$fSeed)
> (var.A <- (MSA - MSE)/(r))

[1] 0.6736962 °
> (var.E <- MSE) 00 0
[1] 4.173264
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SAMP-2: ANOVA Problems?

In some cases, the standard ANOVA, which was used in our example,
produces a negative estimate of a variance component

> This can be seen in (6): If MSe,r > MSyreat, negative values occur

By definition, variance components are positive

Methods, which always yield positive variance components have been
developed: restricted (or residual, or reduced) maximum likelihood estimators
(REML)

The ANOVA method of variance component estimation, which is a method
of moments procedure, and REML estimation may lead to different results

SAMP-2: ANOVA Calculations in R (2/2)

» Finally, the mean u from (4) can extracted
> coef (samp.aov) [1]

(Intercept)
-2.440496

> The p value in the ANOVA table is calculated as
> 1-pf (MSA/MSE,q-1,q*(r-1))

[1] 0.01346323

» Store ANOVA MSA for later:

> MSA.anova <- MSA

(-] 0.0
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>
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SAMP-2: Restricted Maximum Likelihood

> Based on same data: fit the random-effects model (4) using function Rlmer
from R package Rlmefour [1]:

library(lme4)

samp.lmer.0 <- lmer(y~ 1 +(1|fSeed),data=samp.df)

samp.lmer <- lmer(yLog~ 1 +(1|fSeed),data=samp.df)
print(samp.lmer, digits = 4, corr = FALSE)

Linear mixed model fit by REML
Formula: yLog ~ 1 + (1 | fSeed)

Data: samp.df
AIC BIC logLik deviance REMLdev

397.9 405.4 -196 391.6  391.9

Random effects:

Groups  Name Variance Std.Dev.
fSeed (Intercept) 0.6737  0.82079
Residual 4.1733  2.04286

Number of obs: 90, groups: fSeed, 9

Fixed effects:
Estimate Std. Error t value
(Intercept) -3.1912 0.3481 -9.166

(-] 0.0 (-] 0.0
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SAMP-3 Validation of the Model Assumptions

» Checking that residuals all have the same variance
» Left: raw data, right: log-transformed data

residual plot residual plot

BN o 0
LS
- ° 8
1 ° NELI:
o TR
1o o
1. . 8%
g’ii"’; 8 g s :
& §
01 025 03 ous s a0 25
ed(sampmecd) edsampimen
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SAMP-4 Hypothesis Testing

» Testing hypotheses about individual treatments (instances) is useless, because
problem instances 7; samples from some larger population of instances Il

> We test hypotheses about the variance component 072_, i.e., the null
hypothesis

Ho:02=0 is tested versus the alternative Hy:o2>0. (7)

Under Hy, all treatments are identical, i.e., mf is very small

Conclude from (5): E(MSyeat) = 02 + ro2 and E(MSe,) = o2 are similar
Under the alternative, variability exists between treatments.

Standard analysis shows: SSe,/0? is distributed as chi-square with g(r — 1)
degrees of freedom. Under Hp, the ratio

vyvyVvyy

SStreat

Fo= q-1 Mstveat ( )
=55 = e~ a1
ar-1) MSer

> Requirements for testing hypotheses in (4): 71,..., 7, are i.i.d. N(0,02), &,
i=1,...,q,j=1,...,r are iid. N(0,0%), and all 7; and ;; are

()
independent of each other 00 0
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SAMP-3 Validation of the Model Assumptions

> Quantile plots (QQ plots) to validate normality assumptions
» Left: raw data, right: log-transformed data

Q-Q plot for residuals Q-Q plot for residuals

210 1 2 21001 2

Theoretcal Quantles Theoreical Quanties

(-] 0.0
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C dy: SAMP

SAMP-4 Hypothesis Testing and Decision Rules

» Considerations lead decision rule to reject Hp at the significance level « if

fo > F(1—a;9—1,q(r—1)), (8)

where fj is the realization of Fy from the observed data

» Intuitive motivation for the form of statistic Fy can be obtained from the

expected mean squares:
» Under Ho both MSyeat and MSe,, estimate ¢ in an unbiased way, and Fo can
be expected to be close to one
> On the other hand, large values of Fy give evidence against Ho

(-] 0.0
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SAMP-4 Hypothesis Testing and Decision Rules in R

» Based on (5), we can determine the F statistic and the p values:
> VC <- VarCorr(samp.lmer)
> (sigma.tau <- as.numeric(attr(VC$fSeed,"stddev")))

[1] 0.82079
> (sigma <- as.numeric(attr(VC,"sc")))
[1] 2.042857

> q <- nlevels(samp.df$fSeed); r <- length(unique(samp.df$algSeed))
> (MSA <- sigma2+r*sigma.tau”2)

[1] 10.91023
> (MSE <- sigma"2)
[1] 4.173264
Determine p value based on (8):
> 1-pf (MSA/MSE,q-1,q*(r-1))
[1] 0.01346323
» If p value is large, the null hypothesis Hy : 02 = 0 from (7) can not be
rejected, i.e., this indicates that there is no instance effect
» Small p values indicate that there is an problem instance effect
» A similar conclusion was obtained from the ANOVA method of variance

component estimation [-X- ]
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SAMP-5 Confidence Intervals and Prediction in R (MLE)
» Prediction of the algorithm’s performance on a new instance
> Based on (9), the 95% confidence interval can be calculated as follows.
> s <- sqrt(MSA/(g*r))
> Y.. <- mean(samp.df$yLog)
> gsr <- qt(1-0.025,q*(r-1))
>c(Y.. -gsr *s, Y.. + gsr x s)
[1] -3.883996 -2.498484
» Using the ANOVA results from above, i.e., MSA.anova, we obtain the same
confidence interval
» Similar procedures for combinations of fixed and random effects: mixed
models, see [3]
()
00 ©
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SAMP-5 Confidence Intervals and Prediction

» Unbiased estimator of the overall mean p is

q r
Yij
Sy

i=1 j=1
> Its estimated standard error is given by se(fi) = \/MSkreat/qr and
Y. —p

——F oty
V/MSyeat/qr -y

» Hence, [3, p. 232] show that confidence limits for x can be derived as

y. £ t(1—a/2;q(r — 1))\/MSgeat/qr

Tutorial: meaningful and generalizable results July 2013

Hands-on example in R

» Experimental Framework: R-package SPOT (Sequential Parameter
Optimization Toolbox)

> Tuned Algorithm: Evolution Strategy ES

» ES objective function: Gaussian Landscape

> Install SPOT from within R:

> install.packages("SPOT")

> Load SPOT:

> require("SPOT")

Please note: SPOT Version larger than 1.0.4045 is used

Tutorial: meaningful and generalizable results July 2013
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Test Function Instance Generator

» Gaussian Landscape Generator GLG

» Based on code by Yuan and
Gallagher 2006 [4]

» R implementation in SPOT

Documentation / Help on GLG in SPOT:

> ?spotGlgCreate

°
00 0
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Test Function Instance Generator
> Generate landscape
> require(SPOT)
> set.seed(1)
> #set problem definition
> dim=2
> ngauss=200
> lower <- rep(0,dim)
> upper <- rep(1,dim)
> maxval = 10
> ratio = 0.9
> seedGLG = 123
> #create target function
> fn <- spotGlgCreate(dimension=dim,nGaussian=ngauss,lower=lower,
+ upper=upper, globalvalue=maxval,ratio=ratio,seedGLG)
°
00 0
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ample in R

Test Function Instance Generator

> Parameters
> ngauss: Number of Gaussian components
» dim: Dimension of the search space
> lower: Lower boundary
» upper: Upper boundary
> maxval: Maximum value (global optimum)
» ratio: Local optima reach up to ratio x maxval

00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10

Figure : Landscapes with ngauss set to 20, 200, and 2000

Tutorial: meaningful and generalizable results July 2013

Test Function Instance Generator

» Plot landscape

> fun <- function(x) return(maxval-fn(x)) #SPOT does minimization.
> spotSurfContour (fun,lo=lower,up=upper,40)

Tutorial: meaningful and generalizable results July 2013
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ample in R

Test Function Instance Generator Test Function Instance Generator

» Plot an other instance

seedGLG = 1234 » Concept of instance generation
fn <- spotGlgCreate(dimension=dim,nGaussian=ngauss,lower=lower,
upper=upper, globalvalue=maxval,ratio=ratio,seedGLG)

fun <- function(x) return(maxval-fn(x)) #SPOT does minimization.
spotSurfContour (fun, lo=lower ,up=upper , 40)

> Parameters kept fixed

> Different landscapes generated per seed
> Parameter set —> Problem class

> Each seed —> Problem instance

VV+ vy

00 o 00 o
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Tuned Algorithm: Evolution Strategy Running the ES

> As already introduced > Run ES on one problem instance
> seedES=1
. > res <- spotOptimEs(par= rep(NA,dim), fn = fun, lower= lower, upper= upper,
> See also help: + control=list(maxit=100,seed=seedES,mue=5,nu=2))
> print(res)

> ?spotOptimEs $par

[1] 0.28933626 0.09753753
> Test case SAMP

$value
> One fixed parameter setting [1] 0.006726317
$convergence
> Test case MAMP [11 o
» Four recombination operators s "
counts
[1] 100
() (J
00 0 00 0
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Running the ES SAMP: APD File |

» Plot result File: glgesOl.apd (Please note: This file has to be in your R working directory.)
> spotSurfContour (fun,lo=lower,up=upper,40,pointsi=matrix(res$par,,2)) #ES settin gs
control <— list ()

control$maxit <— 100
control$sigmalnit <— 1.0
control$nSigma <— 1
control$tau0 <— 0.0
control$tau <— 1.0
control$stratReco <— 3

& control$objReco <— 2
10 control$kappa <— -1
os control$mue <— 5
00 control$nu <— 2

control$sigmaRestart <— 0
control$prescanmult <— 1
control$mutation <— 2
control$rho <— "bi"

00 o 00 o
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H: xample in R

SAMP: APD File Il SAMP: Preparing Experiment

control$maxGen <— Inf

SPOT configuration list

. > configuration <-list(
#GLG settings +  alg.func="spotAlgStartEsGlg"

dim=2 +  ,alg.roi=spotROI(c(2,1),c(2,1),varnames=c("NU","TAU"))
= ) +  ,alg.seed = 123
Ib <— rep(—1,dim) +  ,init.design.func = "spotCreateDesignLhs"
- . + ,init.design.size = 1
ub <— rep(1,dim) + ,init.design.repeats = 10
ngauss <— 20 + ,io.verbosity=1
- +  ,io.apdFileName = "glgesO1.apd"
max.val < 10 +  ,io.resFileName = "glgesOl.res"
ratio <— 0.9 +  ,io.desFileName = "glges0i.des"
. - +  ,io.bstFileName = "glgesOl.bst"
npinst <— 9 + ,spot.seed = 1234
glgSeed <— 0 + ,spot.fileMode=T
+ ,report.func = "spotReportSAMP")
() ()
00 O 00 0
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ample in R

SAMP: Running the Experiment

» First, create the (very simplistic) experimental design
> result<-spot(spotConfig=configuration,spotTask="init")

spot.R::spot started
> This will create the design to be evaluated in glges01.des:

NU TAU CONFIG REPEATS STEP SEED
211100 123

» This design can be evaluated:

> result<-spot(spotConfig=result,spotTask="run")

90.0
, Zacfferer, Tutorial: meaningful and generalizable results July 2013 53 /97
SAMP: Reporting results 2/4
Performance Performance
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ample in R

SAMP: Reporting results 1/4

> result<-spot(spotConfig=result,spotTask="rep")

[...1
Linear mixed model fit by REML
Formula: yLog ~ 1 + (1 | fSeed)
Data: samp.df
AIC  BIC logLik deviance REMLdev
397.9 405.4 -196 391.6 391.9
Random effects:

Groups  Name Variance Std.Dev.
fSeed (Intercept) 0.6737  0.82079
Residual 4.1733  2.04286

Number of obs: 90, groups: fSeed, 9

Fixed effects:
Estimate Std. Error t value
(Intercept) -3.1912 0.3481 -9.166
[1] "P-value log.: 0.013463233651567"
[1] "P-value: 0.0293342642244862"
[1] "Confidence Interval log.: -3.88399600237052 to -2.49848421628946"
[1] "Confidence Interval: 0.0921162444145894 to 0.368410711264746"

(J
00 0
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H:
SAMP: Reporting results 3/4
Q-Q plot for residuals residual plot
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ample in R

ample in R

SAMP: Reporting results 4 /4 MAMP: Preparing Experiment

» The same APD file is used.
» SPOT configuration list:

Q-Q plot for residuals (log.) residual plot (log.)

> configuration <-list(
< o +  alg.func="spotAlgStartEsGlg"
© e < + ,alg.roi=spotROI(1,4,varnames="0BJRECO" , type="FACTOR")
~ 5 2 8 + al d = 123
2 P ° salg.seed )
= kS 8 o e g 8 8 + ,init.design.func = "spotCreateDesignFactors"
§ o+ 5, 189 8 q & o + ,init.design.size = 4
g H 8 o H + ,init.design.repeats = 10
H & £ 48 s So + ,io.verbosity=1
i .| 1 b . o ° + »io.apdFilelame = "glges01.apd"
Y I ° + ,io.resFileName = "glges02.res"
+ ,io.desFileName = "glges02.des"
? o © 4 + ,io.bstFileName = "glges02.bst"
T T T T T T T T + ,spot.seed = 1234
2 -1 0 1 2 -35 -30 -25 + ,spot.fileMode=T
Theoretical Quantiles fitted(samp.Imerog) *  sreport.func = "spotReportMANP")
00.0 00.0
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ample in R

ample in R

MAMP: Running the Experiment MAMP: Reporting results 1/5

» First, create the experimental design > result<-spot (spotConfig=result,spotTask="rep")
> result<-spot(spotConfig=configuration,spotTask="init") [...1
Linear mixed model fit by REML
Formula: frml

Data: mamp.df

AIC BIC logLik deviance REMLdev

spot.R::spot started

> This will create the design to be evaluated in glges02.des:

1664 1691 -824.8 1644 1650
OBJRECO CONFIG REPEATS STEP SEED Random effects:
11 10 0 123 Groups Name Variance  Std.Dev.
2210 0 123 fSeed:0BJRECO (Intercept) 3.8414e-09 6.1979e-05

fSeed (Intercept) 4.5459e-01 6.7423e-01
33100 123 Residual 5.4986e+00 2.3449¢+00
4 4 10 0 123 Number of obs: 360, groups: fSeed:0BJRECO, 36; fSeed, 9

Fixed effects:

» This design can be evaluated: Estimate Std. E t val
stimate . Iror value

> result<-spot (spotConfig=result,spotTask="run") (Intercept) -3.7512 0.2565 -14.627
0BJRECO1 0.1341 0.2141 0.626
OBJREC02 0.5599 0.2141 2.616
OBJREC03 0.0519 0.2141 0.242
o °
00 O 00 0
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MAMP: Reporting results 2/5

Q-Q plot for residuals i
residual plot
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> Residuals not well distributed
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Tutorial: meaningful and generalizable results July 2013 61 /97
PR P
7 9
04 o 4 .. o F
oo 2o 8 g ] L
4 E——a - = 8 ° g8 |
S]8 B e 8 8 8 il
<] 8 ° o o 8 [
-104 o L
o
4 5 6
] .
8
14
g I
] o ¢
4 o .
1
o
249 8 8
- o
SN
548 ., 8
-8 o 8
o
104
— T T T T T
12 3 s 12 3 s
OBJRECO ()
00 ©

Tutorial: meaningful and generalizable results July 2013 63 /97

ample in R

MAMP: Reporting results 3/5

Q-Q plot for residuals (log.)

residual plot (log.)
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» Better residual distribution for log.-transformated case
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» Just a demonstration

Some Remarks

> Analysis needs more instances

» Actual Purpose: real

» Work in progress

world problems

» To be improved / future work in SPOT:

» Concept transfer

Overview

» Basics in Multicriteria OptimizationMCO (short)

> Preliminaries (algorithm + indicator)

>
>
>
>
>

Ease of use

More demos and examples
Better reports
Visualization

Tuning: Predicting/Exploiting models

Tutorial: meaningful and generalizable results

> Results

» Scientific chances

Basics in MCO

S R™, F(x) = (A(X).

Multicriteria optimization
» Minimize
f:R"”
> w.r.t.

I(p) <xp <u(p), p=1,...n

g(x)<0, j=1
hi(x) =0, k=

X<py & Vi:
IS

Concept of Pareto dominance
» Solution x dominates solution y

fi(x) < fi(y)
fi(x) < fi(y)

Tutorial: meaningful and generalizable results

00 ©
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Basics in MCO
Pareto Dominance
» Pareto set: Set of all non-dominated solutions in search space
x| 3z: z<,x}
» Pareto front: Image of Pareto set in objective space
» Different Pareto front visualizations:
°
00 ©
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Preliminaries: How to compare results

» Different approaches
> Distance based
> Spread based
» Combining both: hypervolume

» Hypervolume

> Size of space covered by Pareto front
> w.r.t to reference point
(parameter of the method)

A(U{y’\a<y’<yyef}>

acA*
with

> current Pareto front A*, reference point yier

(-] 0.0
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Preliminaries: SMS-EMOA

s o ™
@ —
® © Better
Lift
\/ l
[cl< ’
(]
@
C o

«— Better drag

> (p+ 1) hypervolume selection

> 1 solution generated by variation
> solution with least hypervolume contribution omitted
(secondary ranking criterion, first: non-dominated sorting)

(-] 0.0
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Preliminaries: Hypervolume

(J
00 o
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Concept transfer: Problem instances
In practice
> Generate instances of real world problem:
> Natural instances: part of the problem
> Artificial instances: Model and randomize each objective
(see: approach using Holt-Winters above)
In theory
> Gaussian Landscape Generator (see Eq. 3)
> New instance for each objective?
> New parametrization of one instance for each objective?
> (Just?) new realization using same parametrization (one instance)?
= Complex, difficult: all alternatives have pros and cons
(J
00 o
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1
Concept transfer: Problem instances

» Our approach
fo f(x)=(A(x), a0 h(x))
with « rotating the given function by a predefined angle
> Based on suggestion by O. Mersmann

> Scaleable!
> Rotate by 0 degree: single-objective case
> Rotate by 180 degree: full symmetric case

6 6
5 5
4 4
3 3
2 2
1 1
0 0
x1 )
00 ©
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Concept transfer: Problem instance example
6
5
.
3
2
1
0
-1.0 -05 00 05 1.0
x1 x1
Fl \
? o T T K}
-10.0 -9.0 -85 -8.0
yi
Figure : Pareto front and set with 30 degree rotation. ()
00 ©
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|
Concept transfer: Problem instance example

o - v w s oo
o s M w s oo

-1.0 -05 00 05 1.0 -1.0 -05 00 05 10

x1 x1

y2
-100 -9.0 -80
T B

-100 -9.0 -8.0

v

Figure : Pareto front and set with 90 degree rotation. )
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1
Concept transfer: Performance indicator

How to compare for different problems?
» different problems yield different hypervolume values
> bias on final results

Our approach
» mean performance of random search

> generate 1000 random points

> calculate hypervolume of resulting Pareto front
» repeat for 100 times

= mean value of 100 hypervolumes considered

» calculate difference between SMS-EMOA result and mean

» consider differences as normalized hypervolume
> if positive: results are better than for randomized approach
> if negative: ...... (no good)

(-] 0.0
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]
MCO SAMP: APD file |

File: smsemoaglg0l.apd (Please note: This file has to be in your R working
directory)

#SMS-EMOA settings

control list ()
control$mu = 100
control$maxeval = 1000

#GLG settings

dim = 2

Ib = rep(—1,dim)

ub = rep(1,dim)
ngauss= 200

maxval = 10

ratio = 0.9

alpha = pi/6 #30 deg

0%
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|
MCO SAMP: Preparing Experiment
Parametrization
» Design space dimension: 2
» Number of considered instances: 9
» Rotation angle for 2nd objective: 30 degrees
» Number of repetitions per run: 10
» Number of evaluations per run: 1000
» Population size: 100
0%
Tutorial: meaningful and generalizable results July2013 79 /97

MCO SAMP: APD file Il

#instances

npinst = 9 #number of random instances

glgSeed = 0 #starting seed for random problem instances
repeats = 100 #repeats for random search

# do not change the following
evals = control$maxeval

(-] 0.0
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MCO SAMP: Preparing Experiment

First, create the problem instances

apdfile="smsemoaglgOl.apd"

source (apdfile,local=TRUE)

seeds=glgSeed: (glgSeed+npinst)

instances=1ist()

for(i in 1:nmpinst){

tmpSeed= glgSeed: (glgSeed+npinst)

instances[[i]] <- spotGlgCreateRotSearched(dim,alpha,nGaussian=ngauss,
lower=1b, upper=ub, globalvalue=maxval,
ratio=ratio,seeds[i],repeats,evals)

>
>
>
>
>
+
+
+
+
+

(-] 0.0
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MCO SAMP: Preparing Experiment

Second, generate SPOT configuration list

> configuration=list(

+  alg.func="spotAlgStartSmsEmoaGlg"
,alg.roi=spotROI (100,100, varnames="mu"
,alg.seed = 12345

,init.design.func = "spotCreateDesignLhs"
,init.design.size = 1
,init.design.repeats = 10
,io.verbosity=1

,io.apdFileName = apdfile
,io.resFileName = "smsemoaglg0l.res"
,io.bstFileName = "smsemoaglg0l.bst"
,io.desFileName = "smsemoaglgOl.des"
,spot.seed = 125

,spot.fileMode=T

,problem. instances=instances
,report.func = "spotReportSAMP")

B I I

(-] 0.0
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___________________
MCO SAMP: Reporting results 1/4

> result<-spot(spotConfig=result,spotTask="rep")
[...]
[1] "Summary of the mixed model:
Linear mixed model fit by REML
Formula: y ~ 1 + (1 | fSeed)
Data: samp.df
AIC BIC logLik deviance REMLdev
229.1 236.6 -111.5 221.1  223.1
Random effects:
Groups  Name Variance Std.Dev.
fSeed (Intercept) 0.14862 0.38552
Residual 0.61081 0.78154
Number of obs: 90, groups: fSeed, 9

"

Fixed effects:
Estimate Std. Error t value
(Intercept)  0.6896 0.1526  4.518
[...]
[1] "P-value log.: 0.000640827756405948"
[1] "P-value: 0.00189089008095467"
[1] "Confidence Interval log.: 1.4066864498981 to 1.62119139357494"
[1] "Confidence Interval: 0.385926054509692 to 0.993354615587717" [

> p value is small, thus the null hypotheses is rejected ooe
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MCO SAMP: Running the Experiment

» First, create the (very simplistic) experimental design

> result<-spot(spotConfig=configuration,spotTask="init")
» This will create the design to be evaluated in smsemoaglg01.des:

mu CONFIG REPEATS STEP SEED
100 1 10 0 12345

> This design can be evaluated:

> result<-spot(spotConfig=result,spotTask="run"

(J
00 0
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MCO SAMP: Reporting results 2/4
» Distribution of residuals indicates bad model fit
» Log.-transformation not suitable (plots look the same)
Q-Q plot for residuals residual plot
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1
MCO SAMP: Reporting results 3/4

Performance
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MCO MAMP: Preparing Experiment

» Approach like in single-objective case
» Parametrization from SAMP case.

> The same APD file is used.

» Consider population size as factor

» SPOT configuration list:

configuration=list(
alg.func="spotAlgStartSmsEmoaGlg"
,alg.roi=spotROI(10,100,varnames="mu" ,type="INT")
,alg.seed = 12345
,auto.loop.steps = Inf
,auto.loop.nevals = 1
,init.design.func = "spotCreateDesignLhd"
,init.design.size = 5
,init.design.repeats = 10
,io.verbosity=1
,io.apdFileName = apdfile
,io.resFileName = "smsemoaglg02.res"
,io.bstFileName = "smsemoaglg02.bst"
sio.desFileName = "smsemoaglg02.des"
,spot.seed = 125
,spot.fileMode=T
,problem. instances=instances
,report.func = "spotReportMAMP")

>
+
+
+
+
+
+
+
¥
+
¥
+
+
+
+
+
¥
+
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MCO SAMP: Reporting results 4 /4

» Landscapes for instance 4:

> funl <- function(x) return(instances[[4]](x)[,1])
fun2 <- function(x) return(instances[[4]](x)[,2])
spotsurfcontour(funl,lb,ub,levels:seq(fram:O,to:'/,by:O 5))
spotSurfContour (fun2,1b,ub, levels=seq(from=0,to=7,by=0.5))
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» rotation moved global optimum of f; outside the search space
> in some runs, hypervolume of randomized fronts not achieved

> negative values
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MCO MAMP: Running the Experiment

» First, create the experimental design

> result<-spot(spotConfig=configuration,spotTask="init")
» This will create the design to be evaluated in smsemoaglg02.des:

mu CONFIG REPEATS STEP SEED

75 1 10 0 12345
14 2 10 0 12345
99 3 10 0 12345
35 4 10 0 12345
53 5 10 0 12345

» This design can be evaluated:

> result<-spot(spotConfig=result,spotTask="run")

Cologne) Tutorial: meaningful and generalizable results
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___________________
MCO MAMP: Reporting results 1/3

> result<-spot(spotConfig=result,spotTask="rep")
[...]
[1] "Summary of the mixed model produced by lmer: "
Linear mixed model fit by REML
Formula: frml
Data: mamp.df
AIC BIC logLik deviance REMLdev

2369 2402 -1177 2350 2353
Random effects:
Groups  Name Variance  Std.Dev.

fSeed:mu (Intercept) 1.5730e-20 1.2542e-10
fSeed (Intercept) 9.2323e-01 9.6085e-01
Residual 1.0614e+01 3.2580e+00
Number of obs: 450, groups: fSeed:mu, 45; fSeed, 9

Fixed effects:
Estimate Std. Error t value

(Intercept) -0.25962 0.35514 -0.731
mul -1.72623 0.30717 -5.620
mu2 0.08755 0.30717 0.285
mu3 0.32005 0.30717  1.042
mué 0.48296 0.30717  1.572 (J
00 0
[...]
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___________________
MCO MAMP: Reporting results 3/3

Q-Q plot for residuals residual plot
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MCO MAMP: Reporting results
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1
MCO Summary, Outlook

> Summary
» Concept can be transferred to MCO/EMO functions
> Meaningful results are received
> Important step in problem understanding
» Many directions to proceed detected
» Proof of concept
» Adaptation necessary
> In theory: problem instance generation
> In general: indicator
» Problems
> Rotating optima out of bounds
> Negative effect on modeling

(Cologne) Tutorial: meaningful and generalizable results
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MCO Summary, Outlook

Potential research directions-1
With respect to proposed concept

» What about results for different rotation angles?
» What about a different concept for MCO problem generation
(two others proposed)?

» Alternative ways for comparisons?

» Hypervolume used in different way?
» Completely different approach, not invoking hypervolume?

()
00 o
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Summary
Q-1: How to generate test problems?
» Randomization!
» Objective
» Systematic approach
> Related to standard ANOVA
Q-2: How to generalize results?
> Randomization!
» Artificial problems and natural problems treated in the same framework
» Confidence intervals (predictable algorithm behavior)
> Updates and additional material can be downloaded from spotseven.org
()
00 ©
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MCO Summary, Outlook

Potential research directions-2
In general

» How do growing angles in fitness function rotation influence the
Pareto sets

» When do these separate?
Influence on Pareto front?
When does this split ...and “how?

v

v

» Problem instance generator offers great way to “play” with
different functions and investigate Pareto sets, corresponding
Pareto fronts, and the mapping in between

(J
00 o
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