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Motivation

We need test functions to ...

• analyze

• understand

• compare

• design / configure / tune

... algorithms
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Motivation

Test functions should be (sufficiently) ...
• difficult

• diverse

• flexible

• relevant

• cheap to evaluate
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Motivation

Existing Approach: Model-based

1 Collect data from real-world problem

2 Learn structure via model (e.g., Kriging / Gaussian processes)

3 Vary model to generate problem instances

4 Use estimation / prediction as test functions
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Motivation

Model-based Test Functions

Advantages
• Relevance due to real-world
data

• Data more easily accessible
• Nonlinear models yield
flexibility

• Variation yields diversity

Disadvantages
• Bias due to data and model
• Unknown characteristics
• Method for variation?
• and ...
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Motivation

Problem

• Most predictors are
smoothing

• Desirable, e.g., for surrogate
model-based optimization

• Undesirable for test function
generation

• Too easy

→ requirement: non-smoothing
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Simulation-based Test Function Generation
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Simulation-based Test Function Generation

Proposed Remedy

• Simulation
e.g., ŷnc = 1µ̂+C1/2

s ε
instead of estimation
e.g., ŷ(x) = µ̂+ kTK−1(y− 1µ̂)

• Goal of estimation:
• Close to the „true“ value

• Goal of simulation:
• Close to the „true“ process behavior

• Potentially conflicting!
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Simulation-based Test Function Generation

Simulation Example: Undersea Cable
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Simulation-based Test Function Generation

Simulation-based Test Functions:

Advantages
• Avoid / reduce smoothing
• Reproduces behavior of the
real-world process

• Conditional simulation can
reproduce the training data

• Principled approach to
generate diverse instances

Disadvantages
• Between simulated samples:
interpolation (smoothing, less
problematic than with
estimation)

• Required number of simulated
samples unknown

• Complexity in case of large
number of samples
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Simulation-based Test Function Generation

Example

• Training data: 6
samples

• Model simulated at
m = 100 samples

Example code available at:

https://martinzaefferer.de
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Case Study: Protein Sequence Optimization

Case Study: Protein Sequence Optimization

• Freely available data set
• All DNA sequences of length 10
ACGTAACGGT, CGTAAGATTC, ...

• Objective/Fitness: maximize affinity to fluorescent protein
(APC)

• Kriging model trained with 100 sequences
• Simulated for m = 1000 sequences
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Case Study: Protein Sequence Optimization

Results: Landscape Analysis

• Correlation length
• True: 4.5
• Model: 4.48

• Fitness distance correlation
• True: -0.32
• Model: -0.37 (+/- 0.09)

• Number of local optima
• True: 6805
• Model: ≤ 49
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Case Study: Protein Sequence Optimization

Results: Landscape Analysis

• Interpolating m = 1000 samples yields too much smoothness
• but: better than interpolating the 100 training samples

• Larger m required, computational issues
• Workaround:

• Restrict to subspace: fix end of sequences to ACGTA
• Simulate all sequences in the subspace

• True: 16 local optima
• Estimation: 2 local optima
• Simulation: 10 - 19 local optima
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Case Study: Protein Sequence Optimization

Performance: True vs. Estimation
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Case Study: Protein Sequence Optimization

Performance: True vs. Simulation
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Summary and Outlook
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Summary and Outlook

Take Home Message

• Model-based test functions can produce difficult, diverse,
flexible, relevant and cheap to evaluate test functions

• Use (conditional) simulation - not estimation

• If performance on similar problems is of interest: simulation

• If performance on potential realizations of the same
problem is of interest: conditional simulation
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Summary and Outlook

Open Issues

• How many simulated samples (m) are needed for a certain
problem?

• What to do if m grows too large?
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Summary and Outlook

Thanks for Listening

• Questions? Remarks?

PS: You can find the employed modeling tools in the package CEGO
on CRAN: https://cran.r-project.org/package=CEGO. Check
the earlier described 1-dimensional example to see how it works.
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