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1 Introduction

Surrogate models are typically used to lighten the burden of costly objective function evaluations in real-world
optimization. Here, we focus on surrogate models in the discrete, combinatorial optimization domain. This
encompasses, e.g., the following data representations: mixed integer, integer (ordinal or categorical), binary,
permutation, string, tree and graph. After a short explanation, this document provides a tabular overview
of the literature.

While the goal is to give a broad overview, the table is unlikely to be complete. Please be so kind
and email the author1 if you see any shortcomings. Additions, corrections or comments are welcomed
and encouraged. Currently, approaches with probabilistic / distribution-based models (e.g., Estimation of
Distribution algorithms) are not included, or only included as optimizers, not as models. Since they may be
included in the future, feel free to notify the author of any interesting candidates.

2 Explanations

Table 1 presents a tabulated overview of the literature on discrete, surrogate-model based optimization.
Table 2 collects works that are also of interest in this context, but which only deal with the modeling
aspect and not with the optimization aspect. Specified are the data types, modeling strategies, model types,
optimizers, and some further information about the solved problems. The following six strategies of dealing
with discrete data structures are listed:

1. The naive approach: As long as the data can still be represented as a vector (binary variables, integers,
categorical data, permutations) the modeling technique may simply ignore the discrete structure, and
work as usual.

2. Custom modeling: A specific modeling solution is tailored to fit the needs of a certain application.

3. Inherently discrete models: Use of models that are inherently discrete. One example is the use of
tree-based models, like regression trees, random forests or, in some cases, artificial neural networks.

4. Mapping: Discrete variables or structures may be mapped to a more easily handleable representation.
Examples for this approach are the random key mapping for permutations or dummy variables for
categorical variables.

5. Feature extraction: Instead of directly modeling the relation between an object (or its representation)
and its quality, it is possible to calculate real-valued features of the objects. E.g., some properties of a
tree or graph can be extracted (path lengths, tree depths, etc.). These numeric features can than be
modeled with standard techniques.

6. Similarity-based modeling: Where available, measures of (dis)similarity may be used to replace con-
tinuous measures that are, e.g., employed in similarity-based models like k-Nearest Neighbor (k-NN),
Support Vector Machines (SVM), Radial Basis Function Networks (RBFN) or Kriging.

These strategies are not necessarily mutually exclusive. Some methods may either combine several strategies,
or else, can be classified as belonging to several strategies.
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Table 1: Column data lists data type: ordinal integer (ord), categorical integer (cat), binary (bin), permutation (per), signed permutation
(-per), trees (tre), other (oth). Column strategy lists the modeling strategy, as introduced in sec. 2. NA indicates that a strategy does not
clearly fit into any category. Column cost refers to the (time, material, etc.) cost per objective function evaluation. Budget is the maximum
number of allowed evaluations (or in some cases a time limit). If no budget is specified, another stopping criterion was used instead. Where
applicable, column dimension lists the dimensionality of the problem, i.e., the number of variables. Abbreviations: Generalized Linear Model
(GLM), Non-dominated Sorting Genetic Algorithm II (NSGA2), Covariance Matrix Adaption Evolution Strategy (CMA-ES), Evolution
Strategy (ES), Genetic Algorithm (GA), Differential Evolution (DE), Simulated Annealing (SA), Artificial Neural Networks (ANN), Ant
Colony Optimization (ACO), Radial Basis Function Networks (RBFN), Support Vector Machine (SVM), Branch and Bound (B&B), Multi-
start Local Search (MLS), k-Nearest Neighbor (k-NN). Question marks indicate that the respective information was not found in the given
reference.

data strategy model optimizer cost budget dimension topics reference

mix, cat, ord 1, 3 Kriging, Tree visual, statistical analysis high ≤ 100 2, 9 parameter tuning Bartz-Beielstein and Markon [2004]
mix, bin NA Kriging B&B low ? 6 benchmark Davis and Ierapetritou [2007]
mix, ord 1,3 RBFN grid search low few hundred, thousand 2-11 benchmark Holmström [2007]

mix, ord, cat 6 RBFN ES low / ∼high 560 / 280 15 / 23
benchmark,
medical image analysis

Li et al. [2008]

mix, ord, bin 1, 6 Kriging B&B high 50 - 500 5-18

electrical
engineering,
water
management

Hemker [2008]

mix, ord, cat 3, 4
Linear Regression,
Tree

sampling
low /
∼high

- 2-13 algorithm tuning Bartz-Beielstein [2009]

mix, ord, cat 3, 6
Random Forest,
Kriging

MLS ∼high - 4-76 algorithm tuning Hutter et al. [2010]

mix, bin, cat 6 RBFN+cluster GA low 2,000 12
benchmark,
real-world:
chemical industry

Bajer and Holeňa [2010]

mix, ord, cat 4+6
RBFN+cluster+
GLM

GA low
several
thousand

4-13
benchmark,
real-world:
chemical industry

Bajer and Holeňa [2013]

mix, ord, cat 4 SVM NSGA2 ? 2,000 10
finite element,
multi criteria

Herrera et al. [2014]

mix, ord 1 RBFN, Kriging
sampling,
GA

low 500 2-60 benchmark Müller [2015]

mix, cat 1, 3
Random Forest,
Kriging,
Kernel Regression

MLS,
EDA /
CMA-ES

high 200-500 14-36 benchmark Eggensperger et al. [2015]

mix, ord 1 Kriging DE low / high 1000-2000 4-20
benchmark,
chip design

Liu et al. [2016]

mix, ord, cat 3 Random Forest
focus
search

low – high 300 8
machine learning,
tuning,
multi criteria

Horn and Bischl [2016]

ord 1/3
ANN, SVR,
RBFN, Kriging

GA low 500 56
benchmark,
noise

Horng and Lin [2013]

ord 1 RBFN EDA low 10 minutes 6 heuristic selection Martins et al. [2017]

bin 3
Finite State
Machine

GA low 100, 000 1, 000
performance
testing

Corne et al. [2003]

bin 1/3 ANN SA high ? 16
real world,
pump positioning

Rao and Manju [2007]

bin 6 RBFN GA low dim2 10-25 NK-Landscape Moraglio and Kattan [2011a]
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bin 6 RBFN GA high 100 10-40
benchmark,
package deal
negotiation

Fatima and Kattan [2011]

bin 6 Kriging GA low dim2 10-25 NK-Landscape Zaefferer et al. [2014b]
bin 3 Bayesian ANN sampling low thousands 512 Chemical Data Hernández-Lobato et al. [2016]

-per 2 custom brute force high 28 6

signed
permutation,
real world:
weld sequence

Voutchkov et al. [2005]

per 6 RBFN GA low 100 30 - 32 benchmark Moraglio et al. [2011]
per 6 Kriging GA low 100 12 - 32 benchmark Zaefferer et al. [2014b]
per 6 Kriging GA low 200 10 - 50 distance selection Zaefferer et al. [2014a]

per 6 Kriging ACO low
100 -
1,000

50 - 100
benchmark,
tuning

Pérez Cáceres et al. [2015]

per 6 RBFN GA
instance
dependent

1,000 50 - 1,928
numerical stability,
real world:
cell suppression

Smith et al. [2016]

per 6 Kriging
brute force,
GA

low 100 5 - 10 kernel definiteness Zaefferer and Bartz-Beielstein [2016]

tre 6 RBFN GA low 100 symbolic regression Moraglio and Kattan [2011b]

tre 5,6 k-NN GA high 30,000
phenotypic similarity,
genetic programming

Hildebrandt and Branke [2015]

tre 5 k-NN GA high 55,000
job shop scheduling,
genetic programming

Nguyen et al. [2014]

tre NA RBFN GA low 100
symbolic regression,
parity

Kattan and Ong [2015]

tre 2,5 k-NN GA high 25,000
job shop scheduling,
genetic programming

Nguyen et al. [2016]

tre 5 Random Forest GA low 15,000
benchmark,
genetic programming

Pilát and Neruda [2016]

oth 6 k-NN GA rather low
20,000 -
200,000

161 - 259
real-world:
protein structure

Custódio et al. [2010]

oth, bin 3
Landscape State
Machine

GA low several thousand 10, 100
protein sequence,
NK-Landscape

Rowe et al. [2010]

oth 6 Kriging GA high few hundreds
graph-based,
real-world,
protein structure

Romero et al. [2013]

oth 6 Kriging grid search high 40 23
mixed hierarchical
variables, ANN tuning

Swersky et al. [2013]

oth 5 ANN DE low several hundreds 40 - 500
assignment problem,
dynamic

Hao et al. [2016]

oth 6 Kriging gradient based high 1000 120
automatic chemical
design

Gómez-Bombarelli et al. [2016]

oth, mix, cat 3 RF focus search low - high 200 2 - 35 parameter tuning Bischl et al. [2017]
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Table 2: Column data lists data type: Mixed variables (mix), ordinal integer (ord), categorical integer (cat), binary (bin), permutation (per),
signed permutation (-per), trees (tre), other (oth). Column strategy lists the modeling strategy, as introduced in sec. 2. NA indicates that a
strategy does not clearly fit into any category. Where applicable, column dimension lists the dimensionality of the problem, i.e., the number
of variables.

data strategy model dimension topics reference

mix, cat 6 Kriging 1,8
kernels,
data center
temperature model

Qian et al. [2008]

mix, cat 6 Kriging 2,8 kernels, computational fluid dynamics Zhou et al. [2011]

mix, cat, oth 6 Kriging
mixed variables,
hierarchical variables: graph structure

Hutter and Osborne [2013]

mix, cat 4,6 Kriging mixed variables Duvenaud [2014]
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