Surrogate Model Based Optimization of the Substrate Feed Mixture of a Biogas Plant

15th Workshop on Quality Improvement Methods

Martin Zaefferer

16.06.2017

Technology Arts Sciences TH Köln

Overview

- Presented work is based on a collaboration with Daniel Gaida and Thomas Bartz-Beielstein [Zaefferer et al., 2016]
- 1 Problem: Feed Mixture Optimization
- 2 Surrogate Model-Based-Optimization
- **3** Integration of Expert Knowledge
- 4 Case Study: Model Quality
- **5** Case Study: Optimization Performance
- **6** Summary and Outlook

Problem: Feed Mixture Optimization

- Goal: maximize monetary gain of biogas plants
- Gain depends on feed mixture

$$\max_{\boldsymbol{x}\in\mathcal{X}}y=f(\boldsymbol{x}),$$

- y: gain
- x: feed mixture
- $\mathcal{X} \subseteq \mathbb{R}^{+n}$: Search space, respecting bounds on availability of material

- Slow biochemical processes
 - Direct optimization infeasible
 - Need for simulation models, e.g.:
 - Computational Fluid Dynamics (CFD)
 - Anaerobic Digestion Model No1 (ADM1) [Batstone et al., 2002]

Surrogate Model-Based-Optimization

- Simulation still time consuming
- · Need for data-driven surrogate models

Surrogate Model-Based-Optimization

- Algorithm
 - 1 Initial design $\mathbf{X} = {\{\mathbf{x}_1, ..., \mathbf{x}_n\}}$
 - **2** Evaluate with simulation (here: ADM1) $y_i = f_f(\mathbf{x}_i)$
 - ${f 3}$ Train data-driven surrogate model with ${f X}$ and ${m y}$, yielding $\widehat{f}_f({f x})$
 - **4** Optimize surrogate $\mathbf{x}_{n+1} = max_{\mathbf{x}}\hat{f}_f(\mathbf{x})$
- Repeat 2-4 until budget exhausted
- Model: Kriging / Gaussian process regression [Forrester et al., 2008]

Integration of Expert Knowledge

Available expert knowledge

- Not a pure-black box problem
- Coarse grained guess: biomass potential (BMP)
 - Cheap to compute
 - But inaccurate
- Also: knowledge about gain changes, e.g., manure bonus

Use of expert knowledge

- i) Improve initial design: include optimum of BMP model $f_c(\mathbf{x})$
- ii) Improve surrogate model of ADM1 $f_f(\mathbf{x})$ via BMP model $f_c(\mathbf{x})$
- iii) Improve surrogate model: avoid discontinuities (manure bonus)

Multi-fidelity approaches

- Model the differences between the coarse BMP and the fine ADM1 function $\hat{f}_f({\bf x})=\hat{f}_{diff}({\bf x})+f_c({\bf x})$
- Use the BMP model output as an input to the surrogate model $\hat{f}_f({\bf x})=\hat{f}_{input}({\bf x},f_c({\bf x}))$
- Model correlation between BMP and ADM1 explicitly via multi-output Gaussian processes / co-Kriging [Forrester et al., 2007]

$$\hat{f}_f(\mathbf{x}) = \hat{\mu} + \mathbf{c}^T \mathbf{C}^{-1} (\mathbf{y} - \mathbf{1}\hat{\mu}),$$

- C: Matrix of covariances of the training data (coarse-coarse, fine-coarse, fine-fine)
- c: vector of covariances of new sample x and training data (coarse and fine)

Avoiding discontinuity

- Problem: discontinuity in the target function landscape
- May deteriorate Kriging model
- Location and reason of discontinuity is known a priori: manure bonus

• Solution: train two models, with and without manure bonus. Switch between them.

Case Study: Model Quality

Setup:

- 2D case: mixture of pig manure and maize
- 5, 10, 15 and 20 evaluations of the ADM1 / fine model
- 100 evaluations of the BMP / coarse model
- Latin hypercube sampling (LHS)
- Error measure: SMSE [Keijzer, 2004]

Model Quality

Optimization Performance

Setup:

- 2D: pig manure and maize
- 5D: pig manure, maize, grass, corncob, cow manure
- Models:
 - 2-layer Kriging
 - 2-layer co-Kriging
- Initial design (fine): 3 × dimension
- Initial design (coarse): 50 x dimension
- Budget: 5 × dimension
- Surrogate budget: 500 × dimension
- Simulation failure: penalty / imputation
- Initialization: LHS with or without BMP optimum

Optimization Results

• 5D case, after 25 evaluations

Optimization Results

method	dim	gain [eur/d]	gross time [s]	net time [s]	failures
Simplex (ran)	2	1554	898.24	0.37	1
Simplex (BMP)	2	1751	1451.61	0.41	0
LHS (BMP)	2	1553	975.49	0.32	1
Kriging (ran)	2	1702	909.30	10.68	2
Kriging (BMP)	2	1755	895.94	10.66	0
Co-Krig. (ran)	2	1757	861.50	15.20	2
Co-Krig. (BMP)	2	1760	805.76	15.08	0
Simplex (ran)	5	1760	2779.87	0.92	7
Simplex (BMP)	5	1958	1594.88	0.98	0
LHS (BMP)	5	1620	3156.73	0.88	0
Kriging (ran)	5	1808	2763.89	53.16	2
Kriging (BMP)	5	1963	2615.60	53.51	4
Co-Krig. (ran)	5	1917	2980.53	293.60	4
Co-Krig. (BMP)	5	1968	2877.09	288.97	1

Summary and Outlook

Summary

- Pros:
 - Two-layer model approach improves accuracy
 - Multi-fidelity information improves accuracy and performance
 - BMP initialization improves performance
- Cons:
 - Co-Kriging: computational cost may impede benefits
 - Comparison to (deterministic) downhill simplex problematic
 - Generalization?

Open Issues

- Integration in online control (dynamic optimization)
- Larger set of test cases
- More accurate/expensive models, e.g., CFD-based
- Additional objectives or constraints

Summary and Outlook

Thanks for Listening

• Questions?

References I

- Batstone, D. J., Keller, J., Angelidaki, I., Kalyuzhnyi, S. V., Pavlostathis, S. G., Rozzi, A., Sanders, W., Siegrist, H., and Vavilin, V. A. (2002). Anaerobic Digestion Model No. 1, Scientific and technical report no.13. Technical report, IWA Task Group for Mathematic Modelling of Anaerobic Digestion Processes, London.
- Forrester, A., Sobester, A., and Keane, A. (2008). *Engineering Design via Surrogate Modelling*. Wiley.
- Forrester, A. I., Sóbester, A., and Keane, A. J. (2007). Multi-fidelity optimization via surrogate modelling. *Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences*, 463(2088):3251–3269.
- Keijzer, M. (2004). Scaled symbolic regression. Genetic Programming and Evolvable Machines, 5(3):259–269.
- Zaefferer, M., Gaida, D., and Bartz-Beielstein, T. (2016). Multi-fidelity modeling and optimization of biogas plants. *Applied Soft Computing*, 48:13–28.

References

Overall best solutions found

	2D	5D
gain [€/ d]	1,770	1,987
maize [m ³ /d]	22.85	5.22
pig manure [m ³ /d]	11.85	11.48
grass silage $[m^3/d]$	0	18.98
corn-cob-mix [m ³ /d]	0	0.01
cow manure [m ³ /d]	0	0.08
manure bonus	yes	yes
ammonia digester [mg/l] ammonia post-digester [mg/l]	163.4 291.0	216.6 464.2

Scaled MSE

$$\begin{split} \mathsf{SMSE}(\mathbf{y}, \hat{\mathbf{y}}) &= \mathsf{MSE}(\mathbf{y}, \mathbf{1}a + b\hat{\mathbf{y}}) = \\ &= \frac{1}{n} \sum_{i=1}^{n} (y_i - (a + b\hat{y}_i))^2 \\ &\text{where} \quad b \; = \; \frac{\mathsf{cov}(\mathbf{y}, \hat{\mathbf{y}})}{\mathsf{var}(\hat{\mathbf{y}})} \quad \text{and} \quad a = \bar{\hat{\mathbf{y}}} - b\bar{\mathbf{y}} \end{split}$$