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Abstract. Surrogate models are a well established approach to reduce
the number of expensive function evaluations in continuous optimization.
In the context of genetic programming, surrogate modeling still poses
a challenge, due to the complex genotype-phenotype relationships. We
investigate how different genotypic and phenotypic distance measures can
be used to learn Kriging models as surrogates. We compare the measures
and suggest to use their linear combination in a kernel.
We test the resulting model in an optimization framework, using sym-
bolic regression problem instances as a benchmark. Our experiments
show that the model provides valuable information. Firstly, the model
enables an improved optimization performance compared to a model-free
algorithm. Furthermore, the model provides information on the contribu-
tion of different distance measures. The data indicates that a phenotypic
distance measure is important during the early stages of an optimization
run when less data is available. In contrast, genotypic measures, such as
the tree edit distance, contribute more during the later stages.
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1 Introduction

Genetic programming (GP) automatically evolves computer programs that aim
to solve a task. This idea goes back to fundamental work by John Koza [1] and
follows the principles of evolutionary computation. The computer programs are
individuals subject to an evolutionary process, which improves them based on
their fitness, i.e., their ability to solve a problem. Examples for GP tasks are
symbolic regression (SR), classification, and production scheduling [2, 3].

Expensive fitness functions pose a challenge to evolutionary algorithms, in-
cluding GP. This occurs, e.g., when the fitness function requires laboratory ex-
periments or extensive simulations. Frequently, Surrogate Model-Based Opti-
mization (SMBO) is used to deal with expensive evaluations [4]. Most SMBO
research focuses on problems with continuous variables, where many competitive
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regression models are available. In the context of GP, the use of surrogates is not
well researched. This might seem surprising, as the computational bottleneck of
most GP applications is the evaluation of fitness cases. Unfortunately, surrogate
modeling of GP tasks, such as SR, is difficult, because it subsumes modeling of
a complex genotype-phenotype-fitness mapping. Recent work in deep learning
suggests that this mapping can be approximated, at least in certain domains of
program synthesis [5].

In the last years, combinatorial search spaces were treated successfully with
SMBO, by using distance-based models [6, 7]. However, there is no generic way
for choosing an adequate distance measure. For complex tree shaped structures,
which occur in GP, it is challenging to select a suitable distance measure and
find a feasible modeling approach. For that reason, we will focus on the following
research questions regarding SMBO for GP and tree-shaped structures:
1. How do different distance measures compare to each other?
2. What impact do these distances have on the model?
3. How does SMBO based on a linear combination of these distances compare

to a model-free Evolutionary Algorithm (EA) and random search?
To answer these questions, we will utilize bi-level optimization problems based
on different SR tasks as test functions. While these test functions are not that
expensive to evaluate (and hence are not a natural use-case for surrogate models),
they present a challenging benchmark for the proposed models. They allow us to
gain insights into the topics summarized by our research questions. We expect
that our result can be transferred to other problems with tree shaped structures,
such as program synthesis for general purpose or domain-specific languages.

2 Related Work

In the following, we will differentiate between two approaches, which will be
further referred to as a) SMBO and b) SAEA.
a) Sequential SMBO generates new candidate solutions by performing a search

procedure on the surrogate model, e.g., as described for the Efficient Global
Optimization (EGO) algorithm by Jones et al. [8].

b) Approaches that utilize surrogates to assist an EA (SAEA), e.g., as described
by Jin [9]. For example, the surrogate is utilized to support the selection
process of an EA by predicting the fitness of proposed offspring.
Most studies on GP and surrogate modeling focus on SAEA. Kattan and

Ong [10] describe an SAEA approach with two distinct Radial Basis Function
Network (RBFN) models (semantic and fitness). The conjunction of both models
is used to evolve a subset of the population. They report superiority of their
approach over standard GP for three different tasks, including SR.

Hildebrandt and Branke [11] present a phenotypic distance. They optimize
job dispatching rules with an SAEA approach. Their surrogate model is a nearest
neighbor regression model based on the phenotypic distance. They demonstrate
that their model allows for a faster evolution of good solutions. This approach
is also discussed and extended by Nguyen et al. [12, 13].



To the best of our knowledge, only Moraglio and Kattan [14] describe an
SMBO approach to GP where a very limited number of function evaluations
is allowed. They use an RBFN with appropriate distance measures. Their re-
sults did not indicate a significant improvement over the use of a model-free
optimization approach.

In contrast to these works, we aim to learn Kriging models (following the
idea of EGO [8]) and employ them in an SMBO framework with a severely
limited number of 100 fitness function evaluations. Our models are based on a
linear combination of three diverse distances. Like several of the above described
studies, we use SR as a test case. We want to show that the relation between
complex structures and their associated fitness can be learned and exploited
for optimization purposes. Although SR is not particularly expensive, we argue
that it presents a difficult and challenging test case to investigate whether our
proposed models are able to learn such a complex search landscape.

3 A Test Case for SMBO-GP: Bi-level Symbolic
Regression

In SR, a regression task is solved by evolving symbolic expressions. In essence,
SR searches for a formula that best represents a given data set. The formulas
can be represented by trees. Each tree consists of nodes and leaves, as well as the
discrete labels on the nodes (mathematical operators, e.g., +,−, ∗, /) and leaves
(variables and real-valued constants). Figure 1 shows the tree structure of the
symbolic expression

√
c1 − z2 + (z1c2). Our goal is to develop models that learn

the relation between discrete tree structures and their fitness. For now, we are
not interested in the influence of the real-valued constants. Hence, we suggest a
bi-level problem definition.

3.1 Problem Definition

The upper level is the optimization of the discrete tree structure. For each fitness
evaluation of the upper level, the lower level optimization problem has to be
solved, which comprehends the optimization of the constants. Therefore, the
upper level problem is defined by

min
x
F (x, c) subject to c ∈ arg min

c
f(x, c),

where x is the tree structure representation, c ∈ Rd is the set of dc constant
values, and f(x, c) is the lower level objective function. Note, that the number
of constants dc depends on x. In extreme cases, the tree x may not contain any
constants (dc = 0), which eliminates the lower level problem. The fitness will be
determined as

f(x, c) = 1− |cor(ŷ(x, c), y)|, (1)

where ŷ(x, c) denotes the output of the symbolic expression for the data set,
y is the corresponding vector of true observations, and cor(·, ·) is the Pearson



correlation coefficient. If ŷ(x, c) becomes infeasible (e.g., due to a negative square
root or division by zero), we assign a penalty value. To that end, we use the upper
bound of our fitness function, fpenalty(x, c) = 1. An example of an upper level
candidate’s evaluation is visualized in Fig. 1. If not stated otherwise, fitness
evaluations refer to evaluations of the upper level function F .
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Fig. 1. Example for the upper level candidate x =
√
c1 − z2 + (z1c2). To estimate its

fitness F (x, c), a lower level optimizer (step 1) estimates the fitness f(x, c) for different
constants (step 2) and returns the best to F (x, c) (red circle).

3.2 Surrogate Model-Based Optimization

The SMBO approach we employ for the upper level optimization is loosely based
on the EGO algorithm [8]. Initially, the search space is randomly sampled. The
resulting data is used to learn a suitable regression model. This surrogate model
is subject to a search via an optimization algorithm (e.g., an EA), which opti-
mizes an infill criterion based on the model. An iteration ends with evaluating
the actual (upper level) fitness of the new individual. Then, the surrogate model
is updated with the new data and the procedure iterates.

As in standard EGO, we utilize a Kriging regression model, which assumes
that the observed data is derived from a Gaussian process [15]. One reason for the
popularity of Kriging in SMBO is that it allows to estimate its own uncertainty.
The uncertainty estimate can be used to calculate the expected improvement
(EI) infill criterion, which allows to balance exploitation and exploration in an
optimization process [16, 8].

Importantly, Kriging is based on correlation measures or kernels, which de-
scribe the similarity of samples. Exponential kernels, e.g., k(x, x′) = exp(−θ||x−
x′||2), with the parameter θ determined by Maximum Likelihood Estimation
(MLE), are often used. It is straightforward to extend kernel-based models to
combinatorial search spaces [6, 7]. The core idea is to replace the distance mea-
sure, e.g., in the exponential kernel k(x, x′) = exp(−θd(x, x′)). The distance



measure d(x, x′) can be some adequate measure of distance between candidate
solutions, such as an edit distance. Our study follows this idea. We will compare
different distance measures and test how much they can contribute to Kriging
models in an SMBO algorithm.

4 Kernels for Bi-level Symbolic Regression

We investigate four distance measures between trees or symbolic expressions,
that will embedded into an exponential kernel.

4.1 Phenotypic Distance

The Phenotypic Distance (PhD) estimates the dissimilarity of two individuals
(trees) based on their program output / phenotype, instead of using their code /
genotype. This idea has been suggested by Hildebrandt and Branke for evolving
dispatching rules via GP [11]. They defined a phenotypic dissimilarity by com-
paring the outcome of a decision rule based on a small set of test situations. Our
SR tasks require a different definition of the phenotypic distance. We propose to
measure the correlation between the outcomes of two symbolic expressions, with
all numeric constants set to one. Hence, we save the effort of the optimization
of the constants and compare the outputs of the expressions ŷ(x,1) with

dPhD(x, x′) = 1− |cor(ŷ(x,1), ŷ(x′,1))|.

If either of the two expressions is infeasible (e.g., due to division by zero), the
distance will be set to one. Setting all constants to one is of course arbitrary. A
random sample would also be possible but potentially problematic. A difference
in phenotype could be perceived due to a different assignment of the constants on
the leaves, rather than an actually different behavior of the symbolic expressions.

4.2 Tree Edit Distance

As an alternative to the PhD, we will also employ genotypic distances, i.e.,
distances between trees. One possible definition of distance between trees is the
minimal number of edit operations required to transform one tree into another.
This approach is denoted as the Tree Edit Distance (TED). We use the TED
implementation that was introduced by Pawlik and Augsten [17]. It is available
in the APTED library version 0.1.1 [18]. The APTED implementation counts
the following edit operations: node deletion, node insertion, and node relabeling.

4.3 Structural Hamming Distance

The Structural Hamming Distance (SHD) [19] has been used to express genotypic
dissimilarity for model-based GP in several studies [14, 10, 11]. Roughly speaking,
it compares two trees by recursively checking each node that the two trees have



in common. To compare nodes, it uses the Hamming Distance (HD), which is
one if two labels are different and zero otherwise. The original SHD (SHD1) is
defined as

dSHD1(x, x′) =


1, if arity(x0) 6= arity(x′0)
HD(x0, x

′
0), if arity(x0) = arity(x′0) = 0

∆(x, x′), if arity(x0) = arity(x′0) = m,

with

∆(x, x′) =
1

m+ 1

(
HD(x0, x

′
0) +

m∑
i=1

dSHD1(xi, x
′
i)

)
. (2)

Here, x and x′ are trees, x0 indicates a root node of x, xi with i ≥ 1 is the
i-th subtree of x, and arity(x0) implies the number of subtrees linked to the
corresponding node. We use a slight variation, which we refer to as SHD2. For
the sake of simplicity, we define it for trees with a maximum arity of two. SHD1
and SHD2 are identical, except for the case arity(x0) = arity(x′0) = m > 1.
Then, eq. (2) becomes

∆(x, x′) =
1

m+ 1

(
HD(x0, x

′
0)+

min
{

dSHD2(x1, x
′
1) + dSHD2(x2, x

′
2),dSHD2(x1, x

′
2) + dSHD2(x2, x

′
1)
})
.

That means, when two subtrees x1, x2 are compared with their counterparts
x′1, x

′
2, we use the pairing or alignment between x and x′ which yields the smaller

distance. Potentially, this is more accurate, since it does not depend on the (ar-
bitrary) initial alignment of the two trees. But SHD2 requires additional com-
putational effort, even more so for larger arities.

The reason for using this modified variant lies in the nature of our SMBO
algorithm. SAEAs yield datasets where some individuals will have common an-
cestors (or are ancestors of each other), and hence, are inherently more likely
to be aligned with each other. Contrarily, SMBO generates new trees via a
randomly initialized search that avoids direct ancestor relationships among indi-
viduals. This implies that two trees are more likely to have different alignments.
Then, SHD2 is a potentially more accurate (but costly) measure.

4.4 Comparison and Linear Combination of Distances

For the comparison of the four different distance measures, we first calculated
the distance matrices for 100 randomly generated trees (symbolic expressions).
We used the same random tree-generation method as in Sec. 5. We computed
the Pearson correlation between the different distance matrices. For this sample,
the SHD variants yielded a strong correlation of 0.99, which indicates that they
reflect very similar information. For the remaining samples, the correlation was
0.51 (PhD, SHD2), 0.29 (PhD, TED), and 0.37 (TED, SHD2). That is, the
largest diversity was observed between PhD and TED. Figure 2 visualizes the
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Fig. 2. Image plot of the four different tree distance measures. Each image cell is an
element of a distance matrix. The trees are sorted by their complexity (tree depth and
number of nodes). Trees in the lower left corner are less complex than those in the
upper right. The tree depth is annotated in red at the bottom of each plot.

corresponding distance matrices. It shows that the SHD does have problems
with differentiating between trees of different complexity. Several large blocks of
the SHD matrices have a value of one, indicating that the respective trees are
at maximum distance. This lack of perceiving a more fine-grained difference is
problematic. It implies that any model based on SHD is potentially inaccurate
for trees of a complexity that has not been observed so far. TED and PhD tend to
see larger distances for more complex trees. This is obvious for TED, as complex
trees require more operations to be transformed into each other. For PhD it is
clear that complex trees can produce more diverse phenotypic behavior.

With regards to the computational effort, we note that TED is by far the
most expensive measure. It is followed by the PhD and the cheapest measure is
SHD1. While the specifics strongly depend on the implementation, we note that
the TED required at least an order of magnitude more computation time than
the others. This is not surprising, as determining the minimal number of edit
operations requires to solve an optimization problem.

The PhD measure seems most promising in terms of generalizability. Most GP
problems involve some phenotypic behavior that may be measured/compared.
SHD and TED are limited to problems with tree structures and discrete labels.

The diversity of the different distances suggests that it is promising to com-
bine them. We propose a linear combination of the PhD, TED, and SHD2. We



decided to focus on one of the SHD variants due to their similarity and chose
the SHD2 variant due to its potentially increased accuracy. Also, its increased
computational cost disappears compared to the larger costs of the TED. The
linear combination in the kernel is

k(x, x′) = exp
{
−β1dSHD2(x, x′)− β2dPhD(x, x′)− β3dTED(x, x′)

}
. (3)

Each distance receives a weight βi ∈ R+ that is determined by MLE. The linear
combination allows for a potentially more accurate Kriging model. As we do
not know a-priori which distance measure is appropriate for a certain problem
(or whether they complement each other), the combination shifts this decision
problem to the model. Furthermore, the weights provide insights into when and
how much each distance contributes to the model.

5 Case Study

We performed a case study, testing the SMBO algorithm with six SR tasks.
Symbolic Regression Test Problems: We chose the Newton, sine-cosine, Kotan-

chek2D, and Salustowicz1D problems as used in [2] and the sqr and sqr+log
problem as used in [10]. All problem configurations remained unchanged, i.e.,
operator set, data set size, and bounds for variables. We did not evaluate the
derived symbolic expressions on an additional test set since our goal was to
determine the ability of the SMBO algorithm to learn the connection between
candidate solutions and fitness.

Lower level optimization of the constants: To optimize the lower level ob-
jective function, we decided to use the locally biased version of the the Divid-
ing RECTangles (DIRECT) algorithm [20] for a global search. DIRECT uses
1000×dc evaluations of the objective function. The result of the DIRECT run is
further refined with a Nelder-Mead local search [21] (also 1000×dc evaluations).

Upper level optimization of the structure: All algorithms received a budget of
100 upper-level objective function evaluations to emulate an expensive optimiza-
tion problem. We used Random Search (RS) and a model-free EA as baselines.
All operators were taken from the rgp package [22]. For creating new individuals,
both baselines used randfuncRampedHalfAndHalf, parameterized with a maxi-
mum tree depth of 4 and a probability to generate constants of 0.2. Furthermore,
the EA employed crossoverexprFast for recombination, which randomly ex-
changes subtrees. For mutation, mutateSubtreeFast was used. The parameters
of the mutation operator are as follows: 0.1 (probability to insert a subtree), 0.1
(probability to delete a subtree), 0.1 (probability of creating a subtree instead of
a leaf), 0.2 (constant generation probability), and 4 (maximum tree depth). Since
constant values were not considered at the upper level, the respective bounds
in the operator are both set to one. We employed a standard EA (based on
optimEA in the CEGO package [23]) that used the above described operators. The
EA used truncation selection, and a fixed number of children in each generation.
The population size and number of children were tuned (see Sec. 5.1).



The upper level problem was also solved by the SMBO algorithm. We used
the Kriging model from the CEGO package, with the kernel given in eq. (3). The
model was trained within 1, 000 likelihood evaluations (via DIRECT). The EA
searched on the surrogate model with 10, 000 evaluations of the EI criterion in
each iteration. The SMBO search was initialized with 20 random trees.

For the analysis, we recorded the best individual for each run. In addition,
we recorded the weights used for linear combination of the distances in each
iteration, to evaluate the contribution of each distance function over time. Each
algorithm run was repeated 20 times.

5.1 Algorithm Tuning

We decided to tune some potentially sensitive parameters to allow for a more fair
comparison between the model-based and model-free algorithm. The model-free
GP algorithm’s population size µ and number of children λ produced in each
iteration were tuned. All combinations of µ = {5, 10, 15, 20} and λ = {1, 2, 3, 4, 5}
were tested. The optimization performance was expected to be sensitive to these
parameters, due to the extremely small fitness evaluation budget.

For the SMBO algorithm, we did not tune µ and λ. Due to the overall larger
complexity we decided to set the parameters based on experience only, without a
detailed tuning. In fact, due to the larger number of evaluations (of the surrogate
model) the algorithm should be less sensitive to µ and related parameters. Since
10, 000 evaluations of the surrogate model were allowed, a (relative to the model-
free EA) large µ = 200 was given to the EA and correspondingly larger λ = 10.

We also performed preliminary experiments with the mean square error
(MSE) instead of the correlation-based fitness measurement in equation (1).
The MSE-based experiments yielded rather poor results with SMBO. This may
be explained by the penalty for infeasible candidates. The penalty value is very
difficult to set for the MSE case. A poor choice may severely impair the ability
to train a good Kriging model because of strong jumps or plateaus in the fitness
landscape. While our preliminary experiments were not very detailed, they can
be counted as additional tuning effort, since they influenced the choice of the
correlation measure used in the phenotypic distance.

5.2 Analysis and Discussion

Boxplots of the best observed fitness after 50 and 100 evaluations of the objective
function F are shown in Fig. 3. We report results of the tuned, model-free EA
that achieved the best mean rank on all problems (µ = 15, λ = 1). The minimal
λ makes sense, as it allows to perform a large number of iterations despite the
small budget. For each problem and number of evaluations, we tested for statisti-
cal significance of the observed differences via the non-parametric Kruskal-Wallis
rank sum test and Conover posthoc test, with a significance level of 0.05. The
SMBO was significantly better than its two competitors in most cases, except
for Salustowicz1D and Kotanchek2D after 100 evaluations, where no evidence
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Fig. 3. Boxplot of best found values after 50 and 100 evaluations respectively.

for significant differences to the model-free EA is found. The EA was signifi-
cantly better than the plain RS, except for Newton and sine-cosine (50 and 100
evaluations) as well as Kotanchek2D (50 evaluations).

To determine which distance measures contributed to these results, the weights
of the linear combination are shown in Fig. 4. The weights are normalized so
that they sum up to one. We show results for two problems, since they are sim-
ilar in the other four cases. Usually, the PhD received the largest weights in
the beginning, whereas the importance of the TED increased throughout the
run, sometimes overtaking the PhD. SHD usually does not contribute as much,
except for the sqr problem instance. Here, SHD overtakes both other distances
at the end of the run. The generally larger importance of the PhD compared
to SHD is in agreement with previous results by Hildebrandt and Branke [11],
where a similar distance achieved better results than SHD.

We confirmed these results by additional optimization experiments for each
single distance (i.e., without a linear combination). Runs with PhD tended to
suggest good candidate solutions early, whereas TED and SHD performed better
later on. The linear combination performed at least as well as the best of the
single-distance models.
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6 Conclusion and Outlook

We investigated whether three distance measures can be employed in an SMBO
algorithm based on a Kriging model. We tested the algorithm with SR tasks.
With respect to the research questions stated in Sec. 1, our results can be sum-
marized as follows:

1. The distance measures PhD, SHD and TED are quite diverse. The SHD
differentiates poorly between trees with different complexities. Especially
the TED seems to be much more fine grained, but it requires the most
computational effort. On the other hand, the PhD is comparatively cheap
to evaluate and independent of the genotype.

2. Interestingly, the PhD seemed to contribute most, followed by the TED. This
was especially true for small data sets at the beginning of an optimization
run. Later on, TED and to a lesser extent SHD gained importance.

3. A Kriging model based on a linear combination of the three distances seems
to be beneficial for SMBO. The SMBO algorithm outperformed a model-free
algorithm and random search. All algorithms used no more than 100 fitness
evaluations.

In future work, we would like to determine how well these results apply to other
problem classes. Furthermore, alternatives to the linear combination of distances
should be investigated.
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