
Simulation-based Test Functions for Optimization Algorithms
Martin Zae�erer, Andreas Fischbach, Boris Naujoks, �omas Bartz-Beielstein

[�rstname].[lastname]@th-koeln.de
TH Köln, Faculty of Computer Science and Engineering Science

Steinmüllerallee 1, 51643 Gummersbach, Germany

ABSTRACT
When designing or developing optimization algorithms, test func-
tions are crucial to evaluate performance. O�en, test functions are
not su�ciently di�cult, diverse, �exible or relevant to real-world
applications. Previously, test functions with real-world relevance
were generated by training a machine learning model based on
real-world data. �e model estimation is used as a test function.
We propose a more principled approach using simulation instead
of estimation. �us, relevant and varied test functions are created
which represent the behavior of real-world �tness landscapes. Im-
portantly, estimation can lead to excessively smooth test functions
while simulation may avoid this pitfall. Moreover, the simulation
can be conditioned by the data, so that the simulation reproduces
the training data but features diverse behavior in unobserved re-
gions of the search space. �e proposed test function generator is
illustrated with an intuitive, one-dimensional example. To demon-
strate the utility of this approach it is applied to a protein sequence
optimization problem. �is application demonstrates the advan-
tages as well as practical limits of simulation-based test functions.

CCS CONCEPTS
•�eory of computation→Mathematical optimization; Gauss-
ian processes; •Computing methodologies→ Modeling and
simulation;

KEYWORDS
Optimization, Test function generator, Simulation, Modeling
ACM Reference format:
Martin Zae�erer, Andreas Fischbach, Boris Naujoks, �omas Bartz-Beielstein.
2017. Simulation-based Test Functions for Optimization Algorithms. In
Proceedings of GECCO ’17, Berlin, Germany, July 15-19, 2017, 8 pages.
DOI: h�p://dx.doi.org/10.1145/3071178.3071190

1 INTRODUCTION
A crucial issue for the development, improvement and understand-
ing of optimization algorithms are performance tests or bench-
marks. Test functions are required to evaluate the performance of
algorithms. It is particularly di�cult to provide test functions for
expensive optimization problems, where evaluations require high

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permi�ed. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO ’17, Berlin, Germany
© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
978-1-4503-4920-8/17/07. . .$15.00
DOI: h�p://dx.doi.org/10.1145/3071178.3071190

computational e�ort or other limited resources. O�en, expensive
optimization problems necessitate access to complex, con�dential
simulation codes, or access to expensive laboratory equipment.
Even if access is granted, the evaluation costs make extensive tests
infeasible. Only a limited number of expensive problems is openly
available to the research community.

�us, we need a generator of test functions which satisfy certain
criteria. Besides important features, which are listed in well-known
publications (e.g., [6, 30]) we focus on the following criteria.
(C.1) Di�culty: Test functions should be su�ciently complex [21].

Whitley [30] states that test “problems should be resistant to
hill-climbing”.

(C.2) Diversity: �e problem instances are varied, randomized and
not known a priori. �is criterion is a standard in machine
learning, because the available set of problem instances is
partitioned into a training, a validation, and a test set [13].

(C.3) Flexibility: �ey should not be restricted to one speci�c prob-
lem instance. Flexibility is used in machine learning to charac-
terize the number of parameters that are necessary to specify
a model [15]. Flexibility will be used in our framework for
characterizing functions. Some authors use the term “gener-
alizability” to characterize this feature [2].

(C.4) Relevance: �ey should re�ect real-world problem behavior.
(C.5) Evaluation cost: �ey should be inexpensive to evaluate,

allowing for numerous tests.
One way to provide test functions that satisfy criteria (C.1)-

(C.5) is to generate data-driven regression models of the objective
function and use the derived predictor to test algorithms [2, 7, 8,
25]. �is approach has an inherent problem: Almost all regression
models interpolate the data they are trained on and hence yield
smoothed �tness landscapes. �us, the derived instances may be
less rugged and more easy to solve than the real-world problem.
�erefore, data-driven test functions should in addition respect the
following criterion:
(C.6) Non-smoothing, i.e., the test instances re�ect the ruggedness

of the original problem.
�us, the main research question examined in this study is: How
to generate test functions that satisfy criteria (C.1)-(C.6)? To that
end, we propose a general framework for generating test functions
based on real-world data using simulation rather than estimation
(prediction) techniques. Decisively, a simulation has the potential
to avoid the pitfall of smoothing. Furthermore, it provides a princi-
pled way to generate diverse test function instances. To illustrate
these features, we train Kriging models [5] on real-world data. �e
key idea is to use non-conditional and conditional simulation [5]
of Kriging models to generate varied problem instances that do
not smoothen the potentially rugged structure of the real-world
problem. �e simulation-based test functions can re�ect the behav-
ior of the real-world problem rather than just the data itself. �ese

"© Martin Zaefferer, Andreas Fischbach, Boris Naujoks, Thomas Bartz-Beielstein. 2017.
This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive version
was published in the proceedings of GECCO'17, Berlin, Germany,
http://dx.doi.org/10.1145/3071178.3071190."

GECCO ’17, July 15-19, 2017, Berlin, Germany Zae�erer et. al.

test functions are especially interesting for expensive optimization
problems but obviously also apply to the cheap case.

Related approaches will be explained in Sec. 2. A�erwards, Sec. 3
will provide the details of the (non-)conditional Kriging simulation-
based generator. A simple example is given in Sec. 4. To present a
more complex application, the method is applied to a real-world
data set in Sec. 5. Here, we also investigate practical limits of the
approach. Section 6 discusses the applicability of our approach.
Finally, Sec. 7 presents a summary and outlook for this work.

2 RELATEDWORK
�e most basic test function is a simple mathematical expression,
e.g., the sphere function, which re�ects the behavior of many test
functions in the vicinity of the optimum [21]. In many studies, sets
of such expressions are used as testbeds, e.g., combining the sphere,
Branin, or Rosenbrock functions. �ese test suites should obey
certain principles, e.g., nonlinearity, non-separability, and scalabil-
ity [30]. �e bene�t of using sets of well established functions is
that they enable comparability between di�erent studies and can
be used to guarantee generalizable results. Still, certain algorithms
could easily be tailored to over�t a speci�c testbed, because the test
functions are known in advance, i.e., before the study is performed.
Furthermore, the capability of representing complex real-world
behavior is probably limited. �e generating principle of these
classical test function suites [6, 21, 27] can be described as inductive,
because single, simple features such as symmetry or multimodality
are combined to generate a complex test function.

A more comprehensive approach is taken by the Comparing Con-
tinuous Optimizer platform (COCO), also known as the Black Box
Optimization Benchmark (BBOB) [11]. BBOB comprises a frame-
work that automates the experimental procedure involved in testing
of continuous optimization algorithms. BBOB takes an inductive
approach, relying on arti�cial test functions [12]. BBOB provides
an enhanced procedure for post-processing of experimental results
to enable a standardized comparison and analysis.

�e Gaussian Landscape Generator (GLG), which was proposed
by Gallagher and Yuan [10], is also an inductive approach. How-
ever, it is not based on a �xed set of functions. Rather, it randomly
composes Gaussian curves. �e overall �tness value is the maxi-
mum of all curves at a given point. One advantage of the GLG is
the ability to control the number of local optima. �us, the com-
plexity of the resulting test function instances can be controlled.
Also, the randomized process allows for a large variety of test func-
tions. However, the relevance of the resulting functions is debatable.
Similar test function generators are described in [1].

�e Krigi�er approach creates random Kriging models, or Gauss-
ian processes [29]. With a user-speci�ed trend and covariance
structure, the Krigi�er randomly creates a process that can be used
as a non-linear test function. �us, varied and di�cult functions
can be generated based on an inductive approach. �e relevance
of the resulting functions relies on the assumption that real-world
processes are also Gaussian, but it is unclear how the resulting test
functions relate to a speci�c real-world application.

A deductive approach has been employed for a practical applica-
tion by Rudolph et al. [25]. Deductive approaches take a complex

data set and extract important features using data-driven meth-
ods. Rudolph et al. aim to improve algorithm performance on the
real problem (optimization of a ship propulsion system) by tuning
performance on a Kriging surrogate model.

Bartz-Beielstein [2] proposed a deductive approach for optimiza-
tion benchmarks in general. Data from a real-world system are
used to train a model and for generating test function instances.
Model parameters can be stochastically varied to enable diversity.
Statistical tools such as mixed models are also discussed [4].

Similarly, Flasch [8] and Fischbach et al. [7] used a deductive ap-
proach based on Kriging models to generate test functions. Firstly,
real-world data is taken from some experiment. Secondly, a Krig-
ing model is trained with the data. �e Kriging model is varied
by making controlled changes to the model parameters, e.g., the
nugget parameter or parameters of the correlation function. Hence,
it will be referred to as the parameter-variation approach. �en, the
predictor of the varied Kriging model can be used as a test function.
In principle, this approach can be applied to arbitrary models and it
is not restricted to Kriging or Gaussian processes. An extension by
Fischbach et al. [7] takes two problems into account: (i) if a model
is insensitive to some parameter, the derived test function instances
will be nearly identical and (ii) if a parameter has a drastic impact, a
random change may create a function without any resemblance of
the original function. Both problems are handled by computing var-
ious measures of (dis-)similarity between the test function instances
and the unmodi�ed model. �e computed values are required to be
within user-speci�ed bounds. �us, simple copies (too similar) and
strong distortions (not similar enough) are avoided.

Based on these results, we propose a new deductive simulation
approach. �e goal is to generate data-driven test functions that ful-
�ll criteria (C.1) to (C.5) and avoid the pitfall of smoothing (C.6). �e
corresponding methods and required foundations are introduced
in the following.

3 SIMULATION-BASED TEST FUNCTION
GENERATOR

3.1 Kriging Estimation
Kriging is a modeling procedure that understands observations
as realizations of a Gaussian process. A detailed description is
given by Forrester et al. [9]. In optimization, Kriging is a popular
choice, as it additionally provides an estimate of prediction uncer-
tainty, which can be used to balance exploration and exploitation by
computing the expected improvement of candidate solutions [19].
�is approach is most famously employed in the E�cient Global
Optimization algorithm (EGO) [16]. Our study utilizes Kriging to
simulate responses of a Gaussian process.

Kriging approximates the data by modeling the correlation be-
tween observations, e.g., using a Gaussian correlation function
(kernel) k(x ,x ′) = exp(−θd(x ,x ′)), where x ,x ′ ∈ X. Here, X is
some non-empty set, called the search space. If X = Rr then x is a
r -dimensional real vector. Furthermore, θ ∈ R is a kernel parameter
and d(x ,x ′) is a distance function, e.g., d(x ,x ′) = |x−x ′ | with x ∈ R.
Based on this, a correlation matrix K is computed, which collects
all pairwise correlations of the training data X = {x1, ...,xn }. It is

Simulation-based Test Functions for Optimization Algorithms GECCO ’17, July 15-19, 2017, Berlin, Germany

used in the predictor as follows:

ŷ(x) = µ̂ + kTK−1(y − 1µ̂), (1)

where y are the training observations, ŷ(x) is the predicted function
value of a new sample x , µ̂ represents the process mean, 1 is a vector
of ones and k is the column vector of correlations between the set
of training samples X and the new sample x . All parameters (e.g.,
θ , µ̂) are determined by Maximum Likelihood Estimation (MLE).

3.2 Kriging Simulation
�e predictor in Eq. (1) estimates a function value at a new sample
x . �e goal of estimation (or prediction) is to produce values that
are as close to the true values as possible. In contrast, the goal of
simulation is to produce values whose moments are as close to the
moments of the real data as possible [17]. In case of Kriging, the
simulation approach creates realizations of a Gaussian process with
the same mean and covariances as the modeled process.

While the predictor is also based on the process mean and covari-
ance matrix estimated during model training, the predictor itself
does not have these very same properties: it smooths the data and
may even be non-stationary [5]. On the other hand, simulations ac-
tually have the respective mean and covariances. �is is important
when generating test functions: a smoothed landscape may obvi-
ously lack important features of the real, original �tness landscape,
e.g., it may have a smaller number of local optima.

Di�erent approaches to simulation of Gaussian processes ex-
ist [5]. Our approach is based on the square root of the covari-
ance matrix [5]. �is choice is made for computational reasons.
Firstly, a set Xs of m samples is selected. �e process will be simu-
lated at these samples. Secondly, the correlation matrix Ks of the
set Xs is computed. It is decomposed as σ 2Ks = Cs = UΛUT ,

where the process variance σ 2 is determined by MLE and Cs is
the covariance matrix with the eigenvector matrix U and diag-
onal eigenvalue matrix Λ = diag(λ). �e square root of Cs is
C1/2
s = U diag(λ1/2

1 , ..., λ
1/2
m)UT and the simulation is given by

ŷnc = 1µ̂ +C1/2
s ϵ . (2)

Here, ϵ is a vector ofm independent, normally distributed random
numbers with zero mean and unit variance.

3.3 Kriging Conditional Simulation
�e goal of conditional simulation is reproducing the moments of
the training data. At the same time, the simulation can be made
conditional on the training data. �at means, the training data is
reproduced exactly by the simulation, i.e., ŷs = y if Xs = X . �us,
the conditional simulation is a be�er approximation of the training
data, compared to the non-conditional simulation. Still, due to
the di�erent goals of estimation and simulation, the conditional
simulation error is twice as large as the estimation error [5, 17].

At a �rst glance, this feature may seem undesirable. �e useful-
ness of conditional simulation can be demonstrated by a simple
example given by Lantuejoul [18]. �e curves in Fig. 1 represent
depth measurements along an undersea cable. �e interpolation
(thin black line) gives a good estimate of the true depth. �e condi-
tional simulation (dashed red line) on the other hand may have a
large error. However, if the goal is to determine the required length

0 100 200 300 400

−
30

00
−

1
00

0
0

distance [km]

d
ep

th
 [
m

]

Figure 1: Undersea cable depth estimation (black line) and
conditional simulation (dashed red line) and the given data
(black dots). Based on the example presented in [18].

of the cable, the estimation approach may severely underestimate
the true value, while the simulation may work well. Interestingly,
both estimation and simulation are a result of the same trained
model, but represent di�erent features.

�e conditional simulation may result in more realistic shapes
than the predictor. For example, higher frequency behavior may
not be visible in the predictor, but may be visible in a (conditional)
simulation [5]. Similar to the non-conditional simulation, di�erent
conditional simulation approaches exist. Here, we use a straight
forward approach that directly simulates the conditional Gaussian
process [28]. �is is not necessarily the most e�cient choice. But it
allows for a rather simple and transparent implementation. A more
advanced approach can be substituted when needed, e.g., when
growing data size renders the following approach infeasible.

As described in Sec. 3.2, we have the correlation matrix of the
training data (observed data) K and the matrix of correlations be-
tween the samples to be simulated, Ks . Furthermore, Kx denotes
the matrix of the cross-correlations between training and simula-
tion samples. Correlations of the combined training and simulation
samples can be arranged in a block matrix as follows:

Kall =

[
K KT

x
Kx Ks

]
.

Following [28], the conditioned correlation matrix can be calcu-
lated as Kcs = Ks −KxK

−1KT
x . Intuitively, identical training and

simulation data results in a zero correlation matrix Kcs , which
follows from Ks = Kx = K . To simulate the conditional process,
Ccs = σ

2Kcs is used in a similar manner as in (2), with

ŷc = ŷ +C1/2
cs ϵ . (3)

�e estimations ŷ of the simulation samples are derived with Eq. (1).

3.4 Test Function Generator
�e main proposal of this work is to use the (conditional) simulation
approach to generate test functions as described in Algorithm 1.
�e function generator �rst creates or receives data of the problem
(line 2-7). �en, a Gaussian process model is trained with that
data (line 8) and simulation samples are created (line 9). For each
desired test-function, a separate simulation is performed (line 11).

GECCO ’17, July 15-19, 2017, Berlin, Germany Zae�erer et. al.

Algorithm 1 Simulation-based test function generation
1: Given: number of training samples n, simulation samples m

(usually m � n), required test functions nsim and (optionally)
the expensive real-world objective function f(x).

2: if f (x) is available then
3: Create n samples X = {x1, ...,xn }.
4: Determine observations y: yi = f (xi).
5: else
6: User provides data set {X , y}.
7: end if
8: Train Gaussian process model M based on {X , y}.
9: Createm samples Xs = {x1, ...,xm }.

10: for all j ∈ 1, ...,nsim do
11: Create (non-)conditional simulations ŷ(j)s with Eq. (2) or (3).
12: if Xs = X then
13: Simulation ŷ(j)s is the required j-th test function.
14: else
15: Provide j-th test function as interpolation of simulated

samples using Eq. (1): ŷ(j)s (x) = µ̂ + kTs K
−1
s (ŷ

(j)
s − 1µ̂).

16: end if
17: end for

If the simulation covers the whole search space, the resulting values
already represent the test function. If not, an interpolation step (line
15 in Algorithm 1) is necessary. �e chosen simulation approach
only simulates at the given sample locationXs , and does not present
an explicit formula. Hence, the interpolation is necessary when
only a subset of the search space is simulated. To guarantee that
the interpolation step actually reproduces the training data in the
conditional simulation case, it is useful to ensure that X ⊂ Xs .
�e interpolation step has to be used with care. As this step is
based on estimation, it may violate the non-smoothing criterion
(C.6). However, sincem simulation samples are interpolated, rather
than just the n training samples, this issue is less severe than in
the simple estimation case. �e advantages of this test function
generator are:
• It can make use of real-world data and does not require access

to the actual objective function, providing access to inexpensive
test functions (C.5).

• Test functions represent a problem class rather than a single
problem. Diverse test functions can be produced at random (C.2).

• Test functions can reproduce the behavior of real-world prob-
lems (non-conditional simulation) and the underlying data (con-
ditional simulation), thus satisfying the relevance criterion (C.4).

• Estimation-based test functions do not necessarily provide the
most realistic landscape. E.g., higher frequency behavior may be
ignored by the predictor. Contrarily, simulation allows to respect
such behavior [5]. �us, simulation may avoid the main pitfall
of data-driven test function generation and satis�es the non-
smoothing criterion (C.6). Since this avoids overly simpli�ed
test problems, this also helps to meet the di�culty (C.1) and
relevance (C.4) criteria.

• Kriging models are very �exible (C.3). By adapting the kernel
function (or its parameters) most problems can be approximated.

Due to this feature, the simulation approach is even independent
of the solution representation (data type of x) [20, 32].

• Unlike the parameter variation approach (cf. Sec. 2), the simu-
lation approach is a more principled way of generating diverse
test functions (C.2). In the parameter-variation approach, con-
trolled changes to the parameters may have drastic e�ects on
the resulting functions. Simulation, and especially conditional
simulation, on the other hand guarantees that certain structures
of the real-world data are preserved in the test function.

• Unlike the Krigi�er approach, we propose to use data from real-
world problems to derive the simulations (C.4). Furthermore, we
outline the di�culties of excessive smoothing (C.6), which also
a�ect the Krigi�er approach. In addition, conditional simulation
is used, which has not been explored by the Krigi�er.

Disadvantages or possible problems are:
• �e training data may introduce bias. If insu�cient data is

collected, the model may not learn the problem structure.
• �e model selection and con�guration may also introduce bias.

It may be unreasonable to compare certain surrogate models or
their con�gurations based on this procedure: �e models that
use the same con�guration and type as the simulation model
would have an unfair advantage.
• �e number, value and location of local and global optima is

unknown. �is is in contrast to classical test functions, BBOB or
the GLG. If required, such features have to be approximated.

• �e number of simulation samples m is important to be set to a
good value. Very large values ofm may lead to computational
issues due to memory and time requirements. Rather small
values of m may lead to excessive smoothness, due to the �nal
interpolation step. Importantly, this smoothness issue is less
severe than in the estimation case: m is not restricted by the cost
of evaluation of f (x) (unlike the number of training samples n).

• Conditional simulation may produce test functions that have
li�le variation if the trained Kriging model �ts the data exceed-
ingly well, thus violating the diversity criterion (C.2). �e model
estimates low variances and all realizations of the simulation
will be nearly identical. To detect such a case, the estimated
variances at the simulation sample locations can be compared
against a threshold value. In many use-cases, sparsity of train-
ing data due to high costs of evaluation will render this issue
unlikely. �is issue is irrelevant for non-conditional simulation.

4 ONE-DIMENSIONAL EXAMPLE
To demonstrate the intuition behind the simulation-based test func-
tion generator, we �rst present a simple example. �e source code
can be requested from the authors. �e example is based on the
real valued, one-dimensional function

f1dim (x) = exp(−20x) + sin(6x2) + x , (4)

with x ∈ [0, 1]. Here, n = 5 samples are created with uniform
random sampling and are evaluated with f1dim . �e Kriging model
is trained with the data and is simulated atm = 100 locations. �e
simulation samples include the �ve training samples. �e remaining
m −n = 95 samples are drawn from a uniform random distribution.
�is process is repeated nsim = 10 times, so that ten test functions
are created. Figure 2 shows the objective function, the Kriging
estimation and the (non-)conditional simulations.

Simulation-based Test Functions for Optimization Algorithms GECCO ’17, July 15-19, 2017, Berlin, Germany

0.0 0.2 0.4 0.6 0.8 1.0

−
0
.5

0
.5

1
.5

x

E
st

im
a
ti

o
n

0.0 0.2 0.4 0.6 0.8 1.0

−
0
.5

0
.5

1
.5

x

N
o
n
−

c
o
n
d
it

io
n
a
l

0.0 0.2 0.4 0.6 0.8 1.0

−
0
.5

0
.5

1
.5

x

C
o
n
d
it

io
n
a
l

Figure 2: Top: �e function f1dim (x) (dashed, black) and
the Kriging estimation (solid, black) based on training data
(dots). Middle and bottom: 10 realizations of the (condi-
tional) simulations.

�e non-conditional simulation test functions do not reproduce
the training data. While the resulting functions look rather chaotic,
they all share the same covariance structure and hence have similar
smoothness, as well as a similar number of optima. �e test func-
tions are of similar di�culty as f1dim (x) (C.1), are diverse (C.2),
�exible (C.3), relevant to the original problem (C.4), inexpensive
(C.5), and su�ciently rugged (C.6). �e motivation for using these
kinds of test functions would be to test performance on functions
that have similar structure as the real objective function, but are
not necessarily identical to it.

Contrarily, the training data is reproduced by the conditional
simulation test functions. �e conditional simulation’s deviation
from the estimation increases with increasing distance to observed
data. In general, the functions are less varied than the ones based on
non-conditional simulation, but match the true function f1dim (x)
more closely. Hence, the motivation to use non-conditional simula-
tion would be to estimate performance on potential realizations of
the same (black-box) f1dim (x).

5 PROTEIN LANDSCAPE APPLICATION
5.1 Data and Problem
To showcase the application of simulation-based test function gen-
eration in practice, this section presents a real-world example. To
that end, an openly available data set from the �eld of computa-
tional biology is used [3, 23]. It contains the corresponding �tness
values of all DNA sequences of length ten. Here, �tness refers to the
a�nity to a �uorescent target protein: allophycocyanin. �e data

set has previously been used for the assessment of evolutionary
algorithms, using a �nite state machine model [24].

Candidate solutions x are DNA sequences with d = 10 bases,
i.e., strings with ten le�ers that are either A, C, T, or G. �e �tness
faf f inity (x) is the result of the complex measurements described
in [23], and is part of the data set. It has to be maximized.

5.2 Test Function Generation
�e data set comprises all possible 10-base sequences. For our
tests, n = 100 sequences x are selected (randomly, uniformly) and
the corresponding �tness values are taken from the data set. �e
model Mcomplete is trained with the resulting data and is simulated
at m = 1000 additional samples, and nsim = 10 test functions
are created. Since the complete data set is available, there is li�le
motivation for a test function based on conditional simulation.
Hence, we use the non-conditional simulation approach. �e idea
is to create test functions that show similar behavior as the given
protein �tness landscape. Since m is smaller than the size of the
complete search space, this requires to use the interpolation step
during evaluation of the test function. �e derived test functions
are denoted with sim(Mcomplete ,interpolate). Here, the �rst
argument refers to the employed model and the second argument
speci�es that we interpolate between the simulated samples.

To show the e�ect that the interpolation has on the �tness land-
scape, we will create two additional sets of simulation-based test
functions. In both of these cases, the search space is restricted
to a subspace of just 1024 sequences. To that end, the last 5 ele-
ments of each sequence are �xed to ACGTA. In the �rst case, the
above described model Mcomplete is used to simulate all 1024 se-
quences in the subspace. �is case will be denoted sim(Mcomplete ,
simulate-only). In the second case, a new model Msubspace is
trained with 100 sequences selected (randomly, uniformly) from
the 1024 sequences of the subspace. �is case will be denoted sim(
Msubspace ,simulate-only).

Since the candidate solutions or samples are not real-valued, the
correlation function described in Sec. 3.1 can not be used. Instead,
the correlation function has to be changed [20, 32]. Here, the expo-
nential correlation function k(x ,x ′) = exp(−θd(x ,x ′)) is used with
the Hamming distance

d(x ,x ′) =
d∑
i=1

wi with wi =

{
1 if xi , x ′i ,
0 otherwise.

�e Hamming distance also proved to yield good results in other
studies [31] and has the additional advantage of low computational
cost. �e Hamming distance was also used in the original study
that introduced the considered data set [23].

Since the problem is discrete and of rather manageable size, we
can use brute force to estimate the global optimum of each gener-
ated test function. Also, the number of local minima is determined,
i.e., the number of samples whose neighbors do not have a be�er
�tness. Here, Hamming neighborhood is employed. �at means,
the neighbors of a sequence are all sequences that di�er in exactly
one element from the original one.

GECCO ’17, July 15-19, 2017, Berlin, Germany Zae�erer et. al.

5.3 Landscape Analysis
Firstly, we report some landscape characteristics of the test func-
tions based on simulations in the complete, unrestricted search
space, i.e., sim(Mcomplete ,interpolate). Rowe et al. [23] report a
correlation length of roughly 4.5. �ey estimate this value by calcu-
lating the auto-correlation of random walks in the �tness landscape.
�eir result is nicely reproduced by the Kriging model, which is
trained with just 100 samples: the correlation length (the reciprocal
of the kernel parameter θ) determined by maximum likelihood esti-
mation during model training is 4.48. Another good match is the
reported �tness distance correlation: −0.32 (in [23]) versus −0.37
with standard deviation 0.09 (in this study).

Unfortunately, there is also a strong mismatch. Rowe et al. [23]
report that the data set has 6805 local optima. �e simulated test
functions sim(Mcomplete ,interpolate) have 49 local optima or
less. �is is a major problem, as the test functions do not seem
to represent the underlying problem very well. �e test functions
would be far to easy to solve, violating criteria C.1, C.4, and C.6.

�is problem can clearly be linked to the last step of the func-
tion generation: interpolation. �e interpolation is again based
on estimation. It can not represent higher frequency changes in
the landscape very well, as it introduces too much smoothness.
Essentially, the interpolation between simulated samples will re-
move potential local optima which would otherwise be present in
a simulation of the complete search space. Since the number of
simulated samplesm = 1000 is much smaller than the number of
local optima in the real landscape, the resulting test function is
necessarily much smoother than the real problem.

�is problem can be revealed in a down-sized experiment. By
restricting the analysis to a subspace of just 1024 DNA sequences,
i.e., sim(Mcomplete ,simulate-only), interpolation can be avoided.
�is results into landscapes that have between 2 and 7 local optima
(in this subspace). �is result matches more closely to the real
landscape’s behavior, which should on average have 6805/45 ≈ 6.6
local optima in a subspace of this size.

If the model is also directly trained as well as simulated in the
subspace, i.e., sim(Msubspace ,simulate-only), this results into 10
to 19 local optima. �e real landscape has exactly 16 optima in the
subspace. �e earlier violated criteria (C.1, C.4, C.6) are satis�ed.
In theory, we could do the same pure simulation experiment on the
complete search space, but that is computationally infeasible: even
just storing the required 410 x 410 covariance matrix is prohibitive.

Clearly, this is a central issue. As shown, small discrete search
spaces may allow to skip the interpolation step and the correspond-
ing problems. Large, rugged search spaces remain a challenge. We
do not resolve this numerical and computational issue in this arti-
cle, rather point to some potential solution approaches. As noted
in Sec. 3, we used rather simple and straightforward simulation
techniques. �ere are more e�cient simulation techniques that
allow to deal with larger numbers of simulation samples. In the
continuous case, one could try to adopt the spectral simulation
technique that does not directly rely on a set simulated samples
but is based on a sum of cosine functions [5]. Spectral simulation
does not require to compute the complete covariance matrix for the
simulation samples. In the discrete case, Gaussian Markov Random
Field models [26] may be of interest. Here, the Markov property

induces sparsity in the inverse of the covariance matrix, which may
be exploited to deal with large sample sizes.

As the one dimensional example in Sec. 4 showed, interpolating
a small number of simulation samples should provide satisfying
results if the problem itself is rather smooth. Hence, it is desirable
to estimate the required number of simulation samples m that
lead to an interpolation that re�ects the ruggedness of the actual
problem. Clearly, the model is fully speci�ed once all parameters
are determined. It should be possible to estimate m based on the
resulting covariance structure. In that sense, small parameters θ
of the kernel function yield smoother landscapes that require less
simulation samples to approximate. Large θ yield more rugged
landscapes that require more simulation samples. One could also
take an empirical approach to determinem, by increasing it in steps
and observing the convergence of a suitable measure (e.g., some
non-parametric measure of ruggedness of the simulation). Where
possible, expert knowledge about the problem may also help to
determine a suitablem, if, e.g., the number of local optima is known.
Large, rugged search spaces remain a challenge, and should receive
more a�ention in future research.

At the same time, the experimental results demonstrate that
simulation-based test functions should be preferred to pure estima-
tion. �e estimation of the model Msubspace trained in the 5-base
subspace has only 2 optima (in that same subspace). �is stresses
that excessive smoothing may suppress local optima. �is problem
extends to any kind of estimation-based test function generator.

5.4 Performance Analysis
As the landscape analysis showed, the interpolated simulation is
not a good representation of the real problem behavior. Hence, we
use test functions derived from a model Msubspace that is trained
and simulated in the earlier introduced 5-base subspace, i.e., sim(
Msubspace ,simulate-only). By restricting the performance anal-
ysis to the 5-base subspace, we avoid the interpolation problem.
We use the derived simulation-based test functions to evaluate the
performance of optimization algorithms. Ten di�erent test func-
tions are created, and each algorithm is run twenty times on each
function, resulting into 200 replications.

In addition, we want to show the advantage of this approach
in comparison to an estimation-based test function. �erefore, a
baseline test function is derived from the estimation (prediction)
of the same model. Finally, the algorithms tests were repeated
on the actual objective function, i.e., directly using the real data.
Since these last two cases only involve a single objective function
instance, all 200 replications were spent on that single function.

�e tested optimization algorithm is a variant of EGO for combi-
natorial optimization [16, 31]. �e algorithm �rst generates a set
of k samples (randomly, uniformly) and evaluates them with the
objective function (or test function). Di�erent values of the initial
design size parameter k will be tested: k={5,10,20,50}. A Kriging
surrogate model is learned with the resulting data. An optimization
algorithm (here: brute force1) is used to optimize an in�ll criterion.
We compare two in�ll criteria: expected improvement (EI) and the
predicted mean. �e former is, e.g., described in [16]. �e la�er is

1 In larger search spaces, evolution strategies or related methods are more appropriate.

Simulation-based Test Functions for Optimization Algorithms GECCO ’17, July 15-19, 2017, Berlin, Germany

the derived from Eq. (1). �e sample that optimizes the in�ll crite-
rion will be evaluated by the objective function and the result is
used to update the surrogate model. �is procedure is iterated until
a budget of 100 function evaluations is exhausted. Random search
is used as a baseline comparison. Hence, we compare 9 algorithms:
Random search and 8 combinations of the in�ll criterion and k .

Similarly to the COCO framework [11], we use a set of target
values and the respective runtime required to reach these targets
to measure algorithm performance. To that end, the global op-
timum yopt = f (xopt) is determined by brute force. Based on
the determined optimum, the �tness gap is speci�ed as follows
fgap(x) = f (x) − f (xopt). Finally, evenly spaced targets for fgap
are speci�ed on a logarithmic scale: tarf дap = 100, 10−0.2, ..., 10−6.
For each algorithm run, it is recorded a�er what runtime a certain
target is reached. For each set of test functions, we aggregate the
resulting data by calculating the fraction of all targets reached at a
certain runtime. �e resulting curves (fraction of targets reached
against runtime) are called run length distributions [14], empirical
cumulative distribution functions (ECDF) [11] or data pro�les [22].

For our experiments, the ECDF plots are depicted in Fig. 3. �e
results show that using the EI in�ll criterion is crucial. Without
EI, algorithm performance is close to the random search baseline.
Results a�er 100 evaluations seem to be insensitive to k . Earlier
in the runs, smaller design sizes yield superior results. �e strong
positive e�ect of EI can be partly a�ributed to the ruggedness and
relatively large number of local optima. Since the estimation-based
test function is overly smooth, this e�ect is less visible here: the
runs without EI are more easily distinguished from the random
search baseline in case of estimation. �is stresses the importance
of using simulation rather than estimation for testing. Compared
to estimation, the simulation-based results are much closer to the
results on the true function. �e estimation-based test function
severely underestimates the di�culty of the problem. �is stresses
that simulation approaches are more suited to satisfy the required
criteria of test function generators, especially with regards to di�-
culty (C.1), relevance (C.4) and non-smoothness (C.6).

A slight di�erence between simulation-based tests and the real
function performance can be observed. Note, that the goal of the
simulation-based test functions was not to produce exact surrogate
functions for the true, real-world problem. Rather, it was desired
to create test function instances with similar behavior. Still, the
selected kernel of the Kriging model may be improved. �e isotropic
nature of the kernel may not be a perfect choice. Rowe et al. [23]
report that bases at the start of a sequence have larger impacts
than the bases later in the sequence. It may be more exact to use
an anisotropic kernel, which allows to learn the importance of
each base. �is comes at the cost of introducing additional kernel
parameters.

6 DISCUSSION
One remaining question is: When should we use which test function
generation approach? �e answer clearly depends on the context
and goals of the analysis.

We strongly recommend to use a simulation approach if data-
driven, model-based test functions are desired. Simulation is a
principled way of generating diversity and avoiding too much

RandomSearch
Mean.50
Mean.20
Mean.5
Mean.10

EI.5
EI.50
EI.20
EI.10

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2

log10(feval)

re
ac

h
ed

 t
ar

ge
ts

 /
 a

ll
 t

ar
ge

ts

RandomSearch

Mean.50
Mean.20
Mean.10
Mean.5

EI.10
EI.20

EI.5

EI.50

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2

log10(feval)
re

ac
h
ed

 t
ar

ge
ts

 /
 a

ll
 t

ar
ge

ts

RandomSearch
Mean.20
Mean.10
Mean.50
Mean.5

EI.50
EI.5
EI.10
EI.20

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2

log10(feval)

re
ac

h
ed

 t
ar

ge
ts

 /
 a

ll
 t

ar
ge

ts

Figure 3: Logarithmic ECDF plots for three test cases: test
functions based on non-conditional simulation (top), esti-
mation (middle), and the real objective function (bottom).
�e labels inside the plot indicate the con�guration of the
employed algorithm, that is, whether EI or the predicted
mean was used as an in�ll criterion and the size of the ini-
tial design. �e x-axis depicts the logarithm of the number
of �tness function evaluations (feval).

smoothness. But simulation-based test functions are not supposed
to replace classical test function sets. �ese test function sets do
have merits, e.g., their properties and behavior are well understood.
If an algorithm is assessed without any speci�c application in mind,
a mix of both would be ideal. If an algorithm is assessed with the
desire to determine performance on problems with speci�c fea-
tures (e.g., separability, unimodality), classical test functions are
probably preferable. Contrarily, if an algorithm is assessed in the
context of a speci�c real-world application (i.e., C.4 is important), a
simulation-based test function generator should be preferred.

In the la�er case, if performance on a class of problems with
similar behavior as the real objective function is of interest, non-
conditional simulation would be more appropriate. Conditional

GECCO ’17, July 15-19, 2017, Berlin, Germany Zae�erer et. al.

simulation would be more appropriate if the performance on po-
tential realizations of the same problem is of interest.

7 SUMMARY AND OUTLOOK
�e main research question raised in this study was: How to gen-
erate test functions that satisfy criteria (C.1)-(C.6)? We showed
how Kriging simulation can be used to generate test functions
that emulate the behavior of real-world optimization problems. �e
simulation-based approach allows to generate di�cult (C.1), diverse
(C.2), �exible (C.3), relevant (C.4), inexpensive (C.5) test problems
that may avoid detrimental smoothing (C.6).

A simple example was used to illustrate the idea and a protein
sequence data set was employed to demonstrate the application
to a complex, real-world problem. �e protein sequence experi-
ments show that the simulation quality depends on the number of
samples that are simulated. If few samples are simulated in a large,
rugged search space, the resulting test functions may not respect
the behavior of the real-world problem. Especially, the number of
local optima may be underestimated due to an overly smooth test
function. �is applies even more strongly to data-driven function
generators that use estimation instead of simulation. �us, while
not without hazards, simulation does present a clear advantage
over estimation-based approaches.

Future research should focus on the main problem of the simu-
lation-based function generator: dealing with large rugged search
spaces. �at is, simulation methods for a large number of simulation
samples should be investigated. Furthermore, an estimate of the
required number of simulation samples is desirable.

Finally, simulation is not limited to Gaussian processes. Other
kinds of stochastic processes can also be simulated and hence used
to produce test functions. It may be bene�cial to include di�erent
process model types into the analysis, especially to reduce potential
bias introduced by a speci�c choice.

ACKNOWLEDGMENTS
�is work is part of a project that has received funding from the
European Union’s Horizon 2020 research and innovation program
under grant agreement No. 692286.

REFERENCES
[1] Julio Barrera and Carlos A. Coello Coello. 2011. Test Function Generators for

Assessing the Performance of PSOAlgorithms inMultimodal Optimization. Springer
Berlin Heidelberg, Berlin, Heidelberg, 89–117. DOI:h�p://dx.doi.org/10.1007/
978-3-642-17390-5 4

[2] �omas Bartz-Beielstein. 2015. How to Create Generalizable Results. In Springer
Handbook of Computational Intelligence, Janusz Kacprzyk and Witold Pedrycz
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 1127–1142. DOI:h�p:
//dx.doi.org/10.1007/978-3-662-43505-2 56

[3] Bioanalytical Sciences Group - Manchester University. 2011. Microarray data:
Analysis of the Complete Sequence-Fitness Landscape of a DNA Aptamer. Online,
last accessed 31 jan 2017. (2011). h�p://dbkgroup.org/directed-evolution/

[4] Marco Chiarandini and Yuri Goegebeur. 2010. Mixed Models for the Analysis of
Optimization Algorithms. In Experimental Methods for the Analysis of Optimiza-
tion Algorithms, �omas Bartz-Beielstein, Marco Chiarandini, Luis Paquete, and
Mike Preuss (Eds.). Springer, Germany, 225–264.

[5] Noel A.C. Cressie. 1993. Statistics for Spatial Data. JOHN WILEY & SONS INC.
[6] Kenneth A. De Jong. 1975. An analysis of the behavior of a class of genetic adaptive

systems. Ph.D. Dissertation. University of Michigan.
[7] Andreas Fischbach, Martin Zae�erer, Jörg Stork, Martina Friese, and �omas

Bartz-Beielstein. 2016. From Real World Data to Test Functions. In Proceedings.
26. Workshop Computational Intelligence, Frank Ho�mann, Eyke Hüllermeier,
and Ralf Mikut (Eds.). KIT Scienti�c Publishing, Dortmund, 159–177.

[8] Oliver Flasch. 2015. A modular genetic programming system. Ph.D. Dissertation.
TU Dortmund. DOI:h�p://dx.doi.org/10.17877/DE290R-7807

[9] Alexander Forrester, Andras Sobester, and Andy Keane. 2008. Engineering Design
via Surrogate Modelling. Wiley.

[10] Marcus Gallagher and Bo Yuan. 2006. A general-purpose tunable landscape
generator. IEEE Trans. on Evolutionary Computation 10, 5 (oct 2006), 590–603.

[11] Nikolaus Hansen, Anne Auger, Olaf Mersmann, Tea Tušar, and Dimo Brockho�.
2016. COCO: A Platform for Comparing Continuous Optimizers in a Black-Box
Se�ing. ArXiv e-prints arXiv:1603.08785 (2016).

[12] Nikolaus Hansen, Ste�en Finck, Raymond Ros, and Anne Auger. 2009. Real-
Parameter Black-Box Optimization Benchmarking 2009: Noiseless Functions De�-
nitions. Research Report RR-6829. INRIA.

[13] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. 2001. �e Elements of
Statistical Learning. Springer, Berlin, Heidelberg, New York.

[14] Holger H. Hoos and �omas Stützle. 1998. Evaluating Las Vegas Algorithms: Pit-
falls and Remedies. In Proceedings of the Fourteenth Conference on Uncertainty in
Arti�cial Intelligence (UAI’98). Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 238–245.

[15] Gareth James, Daniela Wi�en, Trevor Hastie, and Robert Tibshirani. 2014. An
Introduction to Statistical Learning with Applications in R (4th ed.). Springer.

[16] Donald R. Jones, Ma�hias Schonlau, and William J. Welch. 1998. E�cient global
optimization of expensive black-box functions. Journal of Global Optimization
13, 4 (1998), 455–492.

[17] Andre G. Journel and Charles J. Huijbregts. 1978. Mining Geostatistics. Academic
Press.

[18] Christian Lantuéjoul. 2002. Geostatistical Simulation - Models and Algorithms.
Springer-Verlag Berlin Heidelberg.

[19] Jonas Mockus, Vytautas Tiesis, and Antanas Zilinskas. 1978. Towards Global
Optimization 2. North-Holland, Chapter �e application of Bayesian methods
for seeking the extremum, 117–129.

[20] Alberto Moraglio and Ahmed Ka�an. 2011. Geometric Generalisation of Sur-
rogate Model Based Optimisation to Combinatorial Spaces. In Proceedings of
the 11th European Conference on Evolutionary Computation in Combinatorial
Optimization (EvoCOP’11). Springer, Berlin, Heidelberg, Germany, 142–154.

[21] Jorge J. Moré, Burton S. Garbow, and Kenneth E. Hillstrom. 1981. Testing
Unconstrained Optimization So�ware. ACM Trans. Math. So�ware 7, 1 (1981),
17–41.

[22] Jorge J. Moré and Stefan M. Wild. 2009. Benchmarking Derivative-Free Opti-
mization Algorithms. SIAM Journal on Optimization 20, 1 (jan 2009), 172–191.
DOI:h�p://dx.doi.org/10.1137/080724083

[23] William Rowe, Mark Pla�, David C. Wedge, Philip J. Day, Douglas B. Kell, and
Joshua Knowles. 2009. Analysis of a complete DNA-protein a�nity landscape.
Journal of �e Royal Society Interface 7, 44 (jul 2009), 397–408. DOI:h�p://dx.doi.
org/10.1098/rsif.2009.0193

[24] William Rowe, David C. Wedge, Mark Pla�, Douglas B. Kell, and Joshua Knowles.
2010. Predictive models for population performance on real biological �tness
landscapes. Bioinformatics 26, 17 (jul 2010), 2145–2152. DOI:h�p://dx.doi.org/10.
1093/bioinformatics/btq353

[25] Günter Rudolph, Mike Preuss, and Jan �ad�ieg. 2009. Two-layered surrogate
modeling for tuning optimization metaheuristics. Technical Report TR09-2-005.
TU Dortmund, Dortmund, Germany. Algorithm Engineering Report.

[26] Håvard Rue and Leonhard Held. 2005. Gaussian Markov Random Fields: Theory
and Applications. Monographs on Statistics and Applied Probability, Vol. 104.
Chapman & Hall, London.

[27] Hans-Paul Schwefel. 1995. Evolution and Optimum Seeking. Wiley, New York
NY.

[28] Jonathan R. Stroud, Michael L. Stein, and Shaun Lysen. 2016. Bayesian and
Maximum Likelihood Estimation for Gaussian Processes on an Incomplete La�ice.
Journal of Computational and Graphical Statistics (2016). DOI:h�p://dx.doi.org/
10.1080/10618600.2016.1152970

[29] Michael W. Trosset. 1999. �e Krigi�er: A Procedure for Generating Pseudorandom
Nonlinear Objective Functions for Computational Experimentation. Technical
Report. Institute for Computer Applications in Science and Engineering, NASA
Langley Research Center, Hampton, VA.

[30] L. Darrel Whitley, Keith E. Mathias, Soraya Rana, and John Dzubera. 1995. Build-
ing Be�er Test Functions. In Proceedings of the Sixth International Conference on
Genetic Algorithms, Larry J. Eshelman (Ed.). Morgan Kaufmann, San Francisco
CA, 239–246.

[31] Martin Zae�erer, Jörg Stork, and �omas Bartz-Beielstein. 2014. Distance Mea-
sures for Permutations in Combinatorial E�cient Global Optimization. In Parallel
Problem Solving from Nature–PPSN XIII, �omas Bartz-Beielstein, Jürgen Branke,
Bogdan Filipič, and Jim Smith (Eds.). Springer, Cham, Switzerland, 373–383.

[32] Martin Zae�erer, Jörg Stork, Martina Friese, Andreas Fischbach, Boris Naujoks,
and �omas Bartz-Beielstein. 2014. E�cient Global Optimization for Combinato-
rial Problems. In Proceedings of the 2014 Conference on Genetic and Evolutionary
Computation (GECCO ’14). ACM, New York, NY, USA, 871–878.

http://dx.doi.org/10.1007/978-3-642-17390-5_4
http://dx.doi.org/10.1007/978-3-642-17390-5_4
http://dx.doi.org/10.1007/978-3-662-43505-2_56
http://dx.doi.org/10.1007/978-3-662-43505-2_56
http://dbkgroup.org/directed-evolution/
http://dx.doi.org/10.17877/DE290R-7807
http://dx.doi.org/10.1137/080724083
http://dx.doi.org/10.1098/rsif.2009.0193
http://dx.doi.org/10.1098/rsif.2009.0193
http://dx.doi.org/10.1093/bioinformatics/btq353
http://dx.doi.org/10.1093/bioinformatics/btq353
http://dx.doi.org/10.1080/10618600.2016.1152970
http://dx.doi.org/10.1080/10618600.2016.1152970

	Abstract
	1 Introduction
	2 Related Work
	3 Simulation-based Test Function Generator
	3.1 Kriging Estimation
	3.2 Kriging Simulation
	3.3 Kriging Conditional Simulation
	3.4 Test Function Generator

	4 One-dimensional Example
	5 Protein Landscape Application
	5.1 Data and Problem
	5.2 Test Function Generation
	5.3 Landscape Analysis
	5.4 Performance Analysis

	6 Discussion
	7 Summary and outlook
	Acknowledgments
	References

