
Multi-fidelity Modeling and Optimization
of Biogas Plants

Martin Zaefferer∗, Daniel Gaida, Thomas Bartz-Beielstein
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Abstract

An essential task for operation and planning of biogas plants is the optimization of substrate feed mixtures. Optimizing
the monetary gain requires the determination of the exact amounts of maize, manure, grass silage, and other substrates.
For this purpose, accurate simulation models are mandatory, because the underlying biochemical processes are very
slow. The simulation models may be time-consuming to evaluate, hence we show how to use surrogate-model-based
approaches to optimize biogas plants efficiently. In detail, a Kriging surrogate is employed. To improve model quality
of this surrogate, we integrate cheaply available data into the optimization process. To this end, multi-fidelity modeling
methods like Co-Kriging are applied. Furthermore, a two-layered modeling approach is used to avoid deterioration
of model quality due to discontinuities in the search space. At the same time, the cheaply available data is shown to
be very useful for initialization of the employed optimization algorithms. Overall, we show how biogas plants can be
efficiently modeled using data-driven methods, avoiding discontinuities as well as including cheaply available data.
The application of the derived surrogate models to an optimization process is only partly successful. Given the same
budget of function evaluations, the multi-fidelity approach outperforms the alternatives. However, due to considerable
computational requirements, this advantage may not translate into a success with regards to overall computation time.
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1. Introduction

Optimizing the operation of biogas plants is and will
be one of the main challenges in the field of anaerobic
digestion (AD) in the near future. Due to a steady de-
crease in funding and increasing substrate costs only op-
timal operating biogas plants will be economically ad-
vantageous.

The operation of biogas plants is very sensitive to the
mixture of the used substrates. Hence, optimizing the
mixture is an important task to run or plan such plants
efficiently. Due to the very slow processes involved,
optimizing the plants in real-time would consume too
much time. Models like the Anaerobic Digestion Model
No. 1 (ADM1) allow to compute a good prediction of
biogas plant’s process variables, based on the used sub-
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strates [7]. Thus, ADM1 can be used as a substitute in
the optimization process instead of a real plant.

While such models are much cheaper to evaluate than
their real-world counter-part, they do take some time to
evaluate. Hence, methods that use the smallest amount
of evaluations possible are of interest. This situation
motivated the central question that will be tackled in this
study:
(Q-1) How can the precision of simulation models be

improved without increasing the number of evalu-
ations?

Surrogate modeling techniques are therefore a
promising choice. Besides the expensive information
derived from ADM1, additional performance informa-
tion is available. A rough performance estimate can be
determined based on the biogas potential of the used
substrates and their associated costs. This additional
knowledge can be integrated into the optimization pro-
cess, by bolstering the quality of the chosen surrogate-
modeling technique. This approach of integrating dif-
ferent levels of granularity or cost has previously been
called multi-fidelity optimization [19]. It is worth in-
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vestigating whether these approaches are applicable to
real-world settings. This can be formulated as the sec-
ond question to be analyzed in this study:
(Q-2) What are the benefits and limitations of multi-

fidelity modeling approaches?
In this paper, several multi-fidelity modeling ap-

proaches are compared, and the best are tested for their
performance in an optimization process.

Section 2 gives an overview of relevant previous
work. The specific problem to be solved is introduced in
Section 3. In Section 4, methods that were used in this
study are described. Section 5 presents experiments, in
which various multi-fidelity approaches are tested for
their modeling quality, whereas Section 6 tests the best
of these for their success in solving the actual optimiza-
tion problem. A concluding summary of findings as
well as an outlook on future research is given in Sec-
tion 7.

2. Former Research

2.1. Biogas Plant Simulation
Islam et al. [28] analyze the impact of different fac-

tors on production of biogas in different biogas plants
of Bangladesh. The data was collected from 18 poultry
farms. Their analysis is based on collected data from
survey, Internet, and other sources. To obtain further in-
sight in the behavior of biogas plants, simulation models
such as the ADM1 can be used. ADM1 is very popular
and the nowadays most complex mathematical model
used to simulate the anaerobic digestion process (for a
review see [6]). In several publications it is utilized to
dynamically model full-scale agricultural and industrial
biogas plants [8, 33, 47]. ADM1 is a structured model
incorporating disintegration and hydrolysis, acidogen-
esis, acetogenesis, and methanogenenesis steps. The
ADM1 is implemented as a stiff differential equation
system in a MATLAB R© toolbox for biogas plant model-
ing, optimization and control published by Gaida et al.
[23]. In this toolbox, a model of a full-scale agricultural
biogas plant is developed that is used in the empirical
part of this publication. The simulation model of the
biogas plant includes the ADM1 and furthermore mod-
els of electrical and thermal energy sinks and sources
as well as models for performance and stability crite-
ria. Typical criteria include cost versus benefit (with
respect to the Renewable Energy Sources Act (EEG
2009) in Germany [9]), stability of substrate degrada-
tion processes and operating constraints such as upper
and lower pH limits, maximum VFA/TA [52] value,
maximum total solids content in the digester, and mini-
mum methane concentration of the biogas.

2.2. Biogas Substrate Feed Optimization
Biogas plant substrate feed mixtures have previously

been optimized with a Genetic Algorithm and Particle
Swarm Optimization by Wolf et al. [56]. More recently
Ziegenhirt et al. [60] used state of the art evolution
strategies like Covariance Matrix Adaption Evolution
Strategy (CMAES) [27, 26] or Differential Evolution
(DE) [54] to reduce the number of needed simulations.
They also used the Sequential Parameter Optimization
Toolbox (SPOT) [5] to tune the employed algorithms.
In our work, we directly use SPOT on the substrate feed
optimization problem. That is, we support the optimiza-
tion procedure with surrogate-models.

Both previous studies used a biogas plant model
based on the MATLAB R© Simulink R© Toolbox SIMBA,
developed by ifak system GmbH1. The herein presented
research on the other hand is based on the MATLAB R©

Toolbox for Biogas Plant Simulation [23]. In contrast
to earlier works by Wolf et al. [56] and Ziegenhirt et
al. [60] our approach is not limited to the ADM1. A
simple estimate of a substrate mixtures quality is de-
rived from the biogas potential of each ingredient.

2.3. Surrogate Modeling in Optimization
Especially when the evaluation of target functions is

expensive, it is a well established approach to exploit
surrogate models of the target function to save expen-
sive function evaluations.

A methodical framework for surrogate model based
optimization of noisy and deterministic problems is Se-
quential Parameter Optimization (SPO) introduced by
Bartz-Beielstein et al. [5]. SPO has been developed for
solving expensive algorithm tuning problems but can
be directly employed for solving real world engineering
problems as well.

One of the most often used surrogate-models is Krig-
ing, which is an especially promising model for continu-
ous, smooth problem landscapes. Besides its prediction
performance, it is often employed because it provides
an estimator of the local certainty of the model, which
can be used to calculate the Expected Improvement (EI)
of a new sample over the best known sample. Jones
et al. [32] introduced this concept to balance exploita-
tion and exploration in expensive optimization, terming
it Efficient Global Optimization (EGO).

Other models include Artificial Neural Networks
(ANN) or Support Vector Regression (SVR) [14]. Non-
continuous problem landscapes, or problems which are
not that expensive, may be tackled with approaches like

1www.ifak-system.com
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Random Forest (RF) [11] or Multivariate Adaptive Re-
gression Splines (MARS) [20].

A comprehensive overview of surrogate model as-
sisted optimization was provided by Jin [30], focusing
on single objective problems.

Extensions of the above concepts to multi-objective
problems are available (e.g., multi objective EGO [35,
48, 16] and SPO [58, 59]). Since multi-objective prob-
lems are not in the focus of this paper, we refer to the
overview by Knowles and Nakayama [36] for further
information.

2.4. Multi-fidelity

Multi-fidelity optimization [19] deals with problems
where the target function can be evaluated at different
levels of fidelity. That is, the actual target function rep-
resents the highest level of fidelity, yielding the most
accurate but also most expensive fitness estimate. At
the same time, one or several cheaper, less accurate esti-
mates can represent the lower fidelity levels. The actual,
expensive target function will be referred to as the fine
function, whereas the cheaper and less accurate func-
tion will be referred to as coarse function, respectively.
Note, that in this study, multi-fidelity will usually re-
fer to the case where in fact at least three levels of fi-
delity exist: fine function, coarse function and surrogate
model. Only the first two are inherent to the problem,
the third is learned based on collected data.

Such situations often arise, especially in engineer-
ing problems. There, the evaluation of the actual prob-
lem may be an expensive real-world evaluation mea-
surement, or a time consuming Computational Fluid
Dynamics (CFD) simulation. In these cases, a simpli-
fied physics-based model may yield an inexpensive but
less accurate quality estimate. For some models, fi-
delity may even be scalable. For instance, simplified
meshes with less density can be employed with CFD,
or if available pre-converged simulation results may be
harnessed.

2.4.1. Multi-fidelity Modeling
To exploit information from different fidelity levels

in surrogate modeling, several methods exist, including
Co-Kriging. Forrester et al. [19] show how this can be
applied to engineering problems. Co-Kriging exploits
correlation between coarse and fine function to generate
a better surrogate model of the fine function.

More simple, yet often used, is the idea of using some
kind of scaling to correct the lower fidelity model. This
can be understood as introducing a scaling-model which
corrects the error of the lower fidelity model. The most

typical approaches are to use multiplicative or additive
scaling (or a combination of both). Haftka introduced a
multiplicative scaling to correct a global approximation
with that of a local one, by using a scaling factor based
on the ratio of both approximations and a first order
Taylor series expansion [25]. A similar approach that
uses additive scaling was first proposed by Lewis and
Nash [39]. The original first-order corrections of these
types have also been extended to second order [24, 15].

Another approach is Space Mapping (SM) [4]. In
essence, SM tries to find a transformation, that maps
from the parameter space of a fine function into the
space of a coarse function or vice versa. This trans-
formation can be used to map a solution found with a
coarse function into the fine function space. This also
has the advantage that coarse and fine function space
need not have the same dimensionality.

While many applications are mostly concerned with
deterministic simulations (e.g., using CFD) multi-
fidelity techniques have also been applied to stochastic
problems. Kuya et al. [38] combine data from simula-
tions (deterministic, low-fidelity) and experiments (non-
deterministic, high-fidelity). They studied the influence
of experimental design strategies (mainly on the low-
fidelity level) on the accuracy of a Co-Kriging model.
To deal with systematic error, they also propose to use
blocking and randomization to avoid respective bias
from the experimental procedure.

2.4.2. Multi-fidelity Optimization
Once a certain multi-fidelity modeling technique is

chosen, it has to be decided how to implement the re-
spective models into an optimization framework. One
approach is to use model management techniques to
switch between different levels of fidelity (which may
or may not include surrogate models) [42]. One va-
riety of these techniques are trust-region strategies.
Here, a lower fidelity model is used to approximate
the higher fidelity model during the one-dimensional
search along the direction of the gradient, inside a re-
gion of trust (with respect to accuracy of the lower
fidelity model) [1, 2]. A rather new approach is to
switch between different fidelity methods, as proposed
by Mehmani et al. [42]. They initialize with the low-
est fidelity model and subsequently make decisions for
switching to higher fidelity models. The decision is
based on a non-deterministic metric that takes into ac-
count the uncertainty of a model as well as the ob-
served improvement in fitness. When the uncertainty is
stronger than the improvement, a change of the fidelity
level is made. Another model selection technique for
a stochastic case is introduced by Mullins and Mahade-
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van [44]. They take into account the predictive accuracy
of a model as well as the required computational effort
(which may have to be approximated) to make a selec-
tion.

Essentially, even the earlier introduced surrogate
modeling techniques (Section 2.3) can be understood
as a case of multi-fidelity optimization. They represent
a special case where the lower fidelity model is usu-
ally a data-driven model. In that sense, some methods
(e.g., the trust region strategies) are also classified as
surrogate modeling techniques. Surrogate-model based
searches, where the design (as well as the model) is se-
quentially updated are also sometimes called sequen-
tial sampling (e.g., the earlier introduced EGO algo-
rithm) [29].

2.4.3. Areas of Application
Multi-fidelity optimization has been applied in sev-

eral areas. In the following we give a brief overview
of some of these areas. One important and very fre-
quent area of application for multi-fidelity optimiza-
tion is aerodynamic optimization. For example, several
of the earlier cited works deal with applications from
this field (cf. [2, 24, 19, 38, 42]). Another applica-
tion of multi-fidelity optimization is laser peening, as
reported by Singh and Grandhi [53]. They make use
of application-specific models and surrogate models of
varying fidelity which they employ in different phases
of a particle swarm optimization algorithm. Koziel et
al. [37] used Co-Kriging to design electromagnetic an-
tennas [37]. Electro-magnetic design problems are also
a very typical application of space mapping, which orig-
inated from this area [4].

3. Problem Description

In this paper we deal with a problem where two fi-
delity levels are available. The optimization objective
as well as its two fidelity levels are described in this
section.

3.1. The Optimization Problem

Consider a biogas plant fed with k ∈ N substrates.
Its m ∈ N dimensional system state is symbolized by
z : R+

0 → Z and its substrate feed by x ∈ X, with
Z ⊆ Rm and X ⊆ Rk denoting the state and input space,
respectively.

The objective is to minimize a one-dimensional ob-
jective function f : Z × X → R, which depends on
the state z and the substrate feed x of the biogas plant,

approximately modeled by a set of nonlinear differen-
tial equations ż(t) = g (z(t), x), called the biogas plant
model g : Z × X → Rm. The optimization problem is
solved by choosing the optimal substrate feed x. With
the initial state z0 ∈ Z it can be formulated as:

max
x∈X

f (z(t), x)

s.t. ż(t) = g (z(t), x) , z (0) = z0,

x ≥ xlo, x ≤ xup.

(1)

Here, xlo, xup are the lower and upper bounds for the
substrate feed x.

3.2. The Objective Function

The objective function f represents the daily financial
gain of the plant, defined as follows:

f :=revelect. (z(t), x)

+revtherm. (z(t), x)

−costenerg. (z(t), x)

−costsubs. (x)

(2)

The objective values are given in Euros per day. The de-
cision space is spanned by the amount of each substrate
in the mixture which is fed into the plant. In detail. the
four terms are:

• revenue from selling electrical energy produced in
combined heat and power plants (revelect.)

• revenue from selling thermal energy produced in
combined heat and power plants (revtherm.)

• cost of energy used in plant operation, e.g., stirring
the digester content, substrate transportation, heat-
ing the digesters (costenerg.)

• cost of substrates (costsubs.).

The revenue is defined by the profit obtained selling the
produced electrical and thermal energy, which, in Ger-
many, is determined by the Renewable Energy Sources
Act - EEG. These values are obtained at steady state op-
eration of the biogas plant. The different terms are more
or less dependent on the specific substrate mixture, and
of course dependent on plant-specific parameters which
can be assumed to be constant, e.g., size of fermenters
or outside temperature.
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3.3. The Fine Function

The fine objective function (denoted f f ) is based on
the ADM1 simulation of a biogas plant. The mod-
eled biogas plant contains two digesters and produces
an electrical power of 500 kW. As mentioned above,
the used implementation is the MATLAB R© toolbox de-
veloped by Gaida et al. [23].

This toolbox is able to yield information about all rel-
evant process variables, as well as calculates the mon-
etary gain for a given setting. Depending on the exact
setup, the model will take at least 30 seconds, with an
average of about 1 minute to compute the daily mone-
tary gain for a certain substrate mixture in equilibrium
state. Note, that simulation time may also depend on
the quality of the solution, and the number of substrates
used, see Fig. B.13 in the appendix. Simulations may
fail, or are stopped if they do not yield a result after 10
minutes. These cases have to be dealt with during opti-
mization, as discussed in Section 4.3.

The volumetric flowrate of each available substrate
in the in-feed mixture is varied during the optimiza-
tion process. That means, the dimension of the deci-
sion space depends on the number of available substrate
types. The term ”available” can refer to physical avail-
ability of a substrate at the plant, or the availability of
calibration data for that substrate. Only substrates with
known parameters can be represented by the ADM1.

In this study, two cases will be tested.

• Two-dimensional case: It is assumed that only the
substrates maize and pig manure are available. The
resulting optimization problem is that of finding
the best mixture of both. The low dimensionality
allows for visual analysis thus providing an intu-
itive understanding of the problem.

• Five-dimensional case: Here, three additional
substrates are available, namely cow manure, grass
and corn-cob-mix. This is a realistic scenario for
many agricultural biogas plants.

The exact limits of the optimized parameters are sum-
marized in Table 1.

3.4. The Coarse Function

The coarse, more simple objective function is mostly
based on the biomethane potential of each substrate,
hence called biomethane potential (BMP) model. The
BMP can be calculated for each substrate using the
Buswell equation [12].

Table 1: Lower and upper boundaries for the optimized parameters,
that is the amount of substrates in the mixture.

Substrates xlo [ m3

d ] xup [ m3

d ]

Maize 5.00 40.00
Pig Manure 5.00 60.00
Grass Silage 0.00 20.00
Corn-Cob-Mix 0.00 10.00
Cow Manure 0.00 10.00

Thus, the BMP model estimates that the amount of
produced gas rises linearly with the amount of each sub-
strate feed into the plant. The estimate of produced en-
ergy is limited by the maximum load of the block heat
and power plant. One evaluation takes two hundred mi-
croseconds or less. Hence, ten thousands of coarse func-
tion evaluations could be made during one evaluation of
the fine objective function.

The BMP model is able to yield basic information
like amount of methane gas produced or daily monetary
gain. However, it can not yield the complete set of pro-
cess variables that are available with the ADM1 and is
less accurate.

3.5. Advantages of the Coarse Function
In the case of this application, the optimization pro-

cess can profit in two different ways from the data avail-
able in form of the coarse function. First, the low fi-
delity models optimum can be used to enhance the ini-
tial experimental design created by SPOT, or used as
a starting guess for non-set-based approaches. Sec-
ond, the surrogate model of the global landscape can
be enhanced by the low-fidelity model, e.g., using Co-
Kriging or similar methods.

3.6. Model Implementation, Complexity and Time-
Constraints

The Co-Kriging approach taken here is independent
of the actual implementation of the fine and crude ob-
jective function. Thus, an even more detailed simulation
model could be used for the fine objective function. For
the sake of this study, we investigate an instance of the
ADM1 with medium complexity, which is (relatively)
fast to evaluate. This allows us to study a wider range of
methods and perform a more in-depth analysis. This can
be considered as a benchmark for more complex cases.
Various different implementations of the ADM1 do exist
and are being developed. A recent implementation [17]
contains many more variables, compared to the standard
ADM1 that we use. Most models assume that the di-
gester is perfectly mixed, but there are also approaches

5



that separate the digester into different zones, each of
them modeled by one ADM1 instance [46]. But, the
ADM1 can also be implemented as a CFD model [21].
Thus, depending on the model complexity one simula-
tion can take several seconds but also several minutes or
even hours.

Furthermore, the benchmark in this study does only
take the optimization of the equilibrium state into ac-
count. In practice, substrate parameters as well as
boundary constraints are not constant. Thus, the optimal
substrate feed is only optimal for a short time (assuming
that parameters and constraints can be approximated as
piecewise constant). Therefore, the optimization prob-
lem has to be solved repeatedly, e.g., once per hour or
once per day. Each time, the optimization problem is
solved taking into account the current state of the biogas
plant as well as current parameters and constraints. The
faster this heavily time-constraint optimization problem
can be solved, the smaller is the lag between the present
moment and the moment the optimization problem was
started. Such a real-time optimization scheme was de-
veloped in [22] and it is planned to integrate the meth-
ods proposed in this paper into the mentioned work.

4. Methods

4.1. Modeling

4.1.1. Co-Kriging
Kriging is a method for interpolation and regression

based on Gaussian process modeling. The following no-
tation is adopted from Forrester et al. [18]. Given a set
of n solutions X = {x(i)}i=1...n in a k-dimensional con-
tinuous search space with observations y = {y(i)}i=1...n,
Kriging is a method to find an expression for a pre-
dicted value at an unknown point by interpreting the
observed responses y as if they are realizations of a
stochastic process. The following set of random vec-
tors Y = {Y(x(i))}i=1...n is used to define this stochastic
process. The correlation of the random variables Y(·) is
modeled as follows [18]:

cor
[
Y(x(i)),Y(x(l))

]
= exp

− k∑
j=1

θ j|x
(i)
j − x(l)

j |
p j

 . (3)

The matrix that collects correlations of all pairs {(i, l)} is
called the correlation matrixΨ. It is used in the Kriging
predictor

ŷ(x) = µ̂ + ψTΨ−1(y − 1µ̂), (4)

where ŷ(x) is the predicted function value of a new sam-
ple x, µ̂ is the maximum likelihood estimate of the mean

and ψ is the vector of correlations between training sam-
ples X and the new sample x. The width parameter
θ =

(
θ1, . . . , θ j, . . . , θk

)T
determines how far the influ-

ence of each sample point x spreads. The parameter p j

is usually fixed at p j = 2, and defines the shape of the
correlation function.

As an extension of Kriging, Co-Kriging may in-
clude information of a coarse function into the model.
To that end, Co-Kriging exploits correlation between
the different fidelity levels. According to Forrester et
al. [19], Co-Kriging can be understood to regress the
coarse function while coinciding with the fine func-
tion. We now have two vectors with n f samples from
the fine function and nc samples from the coarse func-
tion, i.e., X f = {x( j)

f } j=1...n f and Xc = {x(i)
c }i=1...nc in a k-

dimensional continuous search space with observations
yc f = {y(i)

c , y
( j)
f }i=1...nc, j=1...n f . Accordingly, the stochastic

process can now be defined by the set of random vectors
Yc f = {Yc(x(i)

c ),Y f (x( j)
f )}i=1...nc, j=1...n f . Then, we obtain

the covariance matrix C =(
σ2

cΨc(Xc,Xc) ρσ2
cΨc(Xc,X f )

ρσ2
cΨc(X f ,Xc) ρ2σ2

cΨc(X f ,X f ) + σ2
dΨd(X f ,X f )

)
,

(5)
where we have the same correlation function, but with
two sets of model parameters for Ψd and Ψc respec-
tively. An additional parameter ρ is introduced as a
constant scaling factor. While Ψc does represent the
correlation structure in the coarse function, Ψd captures
the difference between the Gaussian process represent-
ing the cheap function (scaled by ρ) and the unknown
Gaussian process representing the fine function. The
Co-Kriging predictor for the fine function is

ŷ f (x) = µ̂ + cT C−1(y − 1µ̂), (6)

where c is the vector of covariances between the known
solutions (fine and coarse) Xc f =

(
X f
Xc

)
and the solution

to be predicted x and 1 denotes a vector of ones. We
refer to Forrester et al. [19] for further information. The
model we use in this work is a re-implementation in R
based on MATLAB R© code of Forrester et al. [18].

Two experimental designs are evaluated for Co-
Kriging, one is a large experimental design which cov-
ers the design space of the coarse function. Hence, all
points in this design are evaluated with the coarse func-
tion. The second design is the smaller set of points
evaluated on the fine function. It is nested in the
larger design, that means, each point evaluated on the
fine function is also evaluated on the coarse function.
Both designs should respect some criterion of space-
fillingness. In this work, we create Latin Hypercube De-
signs (LHDs) [40] that maximize the minimum distance
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Figure 1: A flow chart to visualize the algorithmic procedure of opti-
mization with a Co-Kriging surrogate model.

between the samples. That means, the search space is
divided into subsections with a regular grid. Sample
points are placed inside grid cells, such that only one
sample is in each row and column of the grid. Inside a
grid segment, sample points are placed at random, us-
ing a uniform distribution. This procedure is repeated
h times, hence generating h LHDs. The minimum pair-
wise distance of each LHD is calculated, and the LHD
with the largest distance is chosen. This helps to avoid
the off chance of placing sample points too closely, in
case they are in neighboring grid cells.

A flow chart of model based optimization with Co-
Kriging is depicted in Fig. 1.

4.1.2. Alternative multi-fidelity Models
Several simplified alternatives to Co-Kriging can be

used to integrate information from both coarse and fine
function into the modeling process. The following
methods are all compared to Co-Kriging in a prelimi-
nary investigation of model quality.

Diff. Model A very intuitive idea is to assume that the
coarse function is able to model the general struc-
ture correctly. The remaining error can then sim-
ply be corrected by modeling the difference be-
tween coarse and fine function ( fc, f f ). The resid-
uals of the coarse function are used as training data
for a data-driven model. That is, the surrogate
model M̂ is built with design X and observations

f f (X) = y f , fc(X) = yc and

M̂di f f = fM
(
X, y f − yc

)
. (7)

Here, M(.) is function that builds the respective
surrogate model. A new prediction is then always
based on the result of the model, as well as the re-
sult of the coarse function:

ŷ f = f̂ f (x) = f̂di f f (x) + fc(x), (8)

where ŷ f is the predicted fine function value and
f̂di f f represents the prediction of the surrogate
model M̂di f f . This model will be referred to as
the Difference Model (Diff. Model). It is essen-
tially the same as the additive scaling approach
mentioned in Sec. 2.4.1.

Ratio Model The Ratio Model works in a very similar
way. Instead of differences, i.e., residuals, the ratio
between fine and coarse function is modeled.

M̂ratio = fM

(
X,

y f

yc

)
(9)

The prediction of the Ratio Model M̂ratio is given
as

ŷ f = f̂ f (x) = f̂ratio(x) fc(x). (10)

It is essentially the same as the multiplicative scal-
ing approach mentioned in Sec. 2.4.1.

Input Model The input model takes a slightly different
approach. The response of the coarse target func-
tion is used as an additional input parameter of the
model, e.g., Kriging.

M̂input = fM({X, yc}, y f ), (11)

with prediction:

ŷ f = f̂ f (x) = f̂input({x, fc(x)}). (12)

These three simple approaches can all be applied to
arbitrary models, e.g., Neural Networks or Support Vec-
tor Machines. They require the coarse function during
prediction. Of course, if the coarse function itself is
somewhat costly, although cheaper than the fine func-
tion, it can again be replaced by a separate surrogate
model.
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4.1.3. Two-layer Modeling
One problem in surrogate modeling of biogas plants

is that the modeled landscape is not continuous, as illus-
trated in Fig. 2. In this example, the actual gain function
has a saltus at x = 30%. In fact, the optimum is often
in the vicinity of a saltus in decision space, which can
also be seen in Fig. 3. This behavior is caused by the
so called manure bonus, which is a fixed bonus paid to
biogas producers. This bonus is paid, if more than 30%
of the substrate contains specific manures [9].

Models like Kriging are best suited for continuous
landscapes. To some extent, they are able to deal with
discontinuities, at least globally. Still, a Kriging model
will always deteriorate in regions close to the disconti-
nuities. This is especially problematic due to the fact
that the optimum may often be close to the 30 percent
bonus limit. The model quality would therefore be de-
teriorated in the vicinity of the optimum. To avoid this
problem, two approaches are eligible for this applica-
tion.

1. While the modeled landscape is that of the actual
monetary gain, the simulation does provide addi-
tional information. This could be exploited by
modeling the exact amount of produced gas (e.g.,
with Co-Kriging), and calculating the monetary
gain on-the-fly during prediction. The amount of
produced gas would be continuous over the whole
design space, thus yielding a reasonable surrogate
model. The drawback is, that at least two models
would need to be trained: the first, which models
the amount of produced methane gas, and the sec-
ond, which models further results from the ADM1
simulation which affect the gain of the plant. Also,
the on-the-fly calculation of the monetary gain
would be added on top of the effort of the predic-
tion during the surrogate-optimization process.

2. The alternative is, to create two Kriging models
for the monetary gain, one approximating mone-
tary gain without manure bonus and one with the
manure bonus. During surrogate-optimization the
optimizer will switch between the two models, de-
pending on whether the 30 percent bonus limit is
reached. The two layers are illustrated in Fig. 2.

The former approach would be more time consuming,
since it needs to calculate the monetary gain for each
predicted sample. Also, each model would have to pre-
dict each sample, because both values are needed for the
monetary gain calculation. The latter approach would
only require to take the 30 percent bonus limit into ac-
count, to switch between models, without any further

Manure 

[%]

Gain 

[€/d]

actual gain
theor. gain with manure bonus
theor. gain without manure bonus

           20             30             40

800

700

600

Figure 2: Illustration of the two different modeling layers in the Two-
layer surrogate model. Here, only the percentage of manure for a fixed
amount of other substrates is assumed to vary. The discontinuity in the
curve arises at exactly 30 percent manure.

calculations. The drawback would be the loss of infor-
mation, since the former approach is able to give an es-
timate of the produced amount of gas to the interested
user. In this study, it was decided to take the less infor-
mative but more efficient approach two. We refer to this
as the Two-layer approach, due to the two different mod-
els of the monetary gain. The difference in model qual-
ity will be investigated in a preliminary study in Sec. 5.

Essentially, this approach is comparable to the com-
bined meta-modeling of discrete (logic) and continuous
functions proposed by Meckesheimer et al. [41]. Our
approach would be best represented by the case where
the meta-modeling only encompasses the continuous re-
sponses, whereas the logic/decision function does not
need to be approximated due to its low evaluation cost.

Please note, that the earlier described bump in the de-
cision space is not a constant offset. The manure bonus
which causes this discontinuity affects the revenue from
sold gas, thus having a multiplicative influence on a sin-
gle part of the objective value calculation. The impact
of gas pricing on the overall gain varies significantly in
the given search space.

4.2. Error Measure

Two error measures will be used in the model qual-
ity experiments. The Mean Squared Error (MSE) of
the vector of n observations y = (y1, . . . , yi, . . . , yn)T

and the vector of corresponding predictions ŷ =

(ŷ1, . . . , ŷi, . . . , ŷn)T

MSE(y, ŷ) =
1
n

n∑
i=1

(yi − ŷi)2. (13)
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The second error measure is the Scaled MSE (SMSE)
as introduced by Keijzer [34]. Keijzer [34] defines the
SMSE as follows:

SMSE(y, ŷ) = MSE(y, 1a + bŷ) =

(13)
=

1
n

n∑
i=1

(yi − (a + bŷi))2

where b =
cov(y, ŷ)

var(ŷ)
and a = ¯̂y − bȳ

(14)

Here, ¯̂y and ȳ indicate the respective mean values. The
SMSE can be understood to evaluate differences be-
tween two vectors after scaling them to a common
range. That allows to ignore errors that are irrelevant
to the optimization procedure. A simple example would
be a prediction ŷ that differs from the observations y
only by a constant offset. While this prediction would
receive a comparatively large MSE value, the location
of the optimum would be perfectly accurate. SMSE is
considered as the adequate error measure in this case.
Section 5 will further motivate this choice for the biogas
application, showing preliminary results where SMSE
is clearly the more reasonable indicator.

4.3. Handling Evaluation Failures
Simulations of the expensive, fine target function may

fail and lead to unreasonable or missing results. These
failures are consistent, i.e., a repeated evaluation of a
failed configuration will fail again. Such points can not
always be ignored. Ignoring them could lead to a sit-
uation were the optimization process would repeatedly
suggest an instable configuration. This would possibly
prevent the optimization progress. Instead, only failed
simulations in the initial design are removed.

Failed simulations in the optimization process itself
are replaced by the imputation method suggested by
Forrester et al. [18]. That means, instead of the miss-
ing simulation result ŷ(x) + ŝ(x) is imputed. Here, ŷ(x)
is the prediction of the (Co-)Kriging model and ŝ(x) is
the uncertainty estimate, which is used as a penalty. In
a sense, we impute some upper confidence bound, as
estimated by the Kriging model.

Naturally, such a method is only possible where a
variance estimate of the model is available. All non-
model-supported approaches use a fixed penalty value.
That means, they receive a constant value that represents
bad quality whenever the simulation fails.

4.4. Optimization Algorithms
Three different optimization approaches are em-

ployed in this study, either to optimize the fine/coarse

function directly, or to optimize the corresponding sur-
rogate models.

• Downhill Simplex Method (Simplex) is a clas-
sic, derivative free, local optimization method
developed by Nelder and Mead [45]. For the
experiments in this paper a bound constrained
Simplex [10] implementation from the NLopt li-
brary [31] is used, interfaced by the R-package
nloptr [57].

• Differential Evolution (DE) [49, 50] is a state-of-
the-art derivative free optimization method based
on the principles of evolution. Due to being
population-based and due to its stochastic nature it
has the capability (although no guarantee) to leave
local optima. The R-implementation in the pack-
age DEoptim [3, 43] was used in the experiments.

• Latin Hypercube Sampling (LHS) is a very sim-
ple optimization strategy, where a space filling
Latin Hypercube Design (LHD) of experiment is
evaluated in the decision space of the optimization
problem. The best found solution in this design is
the estimated optimum. As with all LHD instances
in this study, the design creation uses h = 100 re-
peats for the selection of a design with largest min-
imum pairwise distance.

5. Preliminary Study: Model Quality

A first study was performed to analyze how well the
different surrogate-models represent the problem land-
scape, i.e., testing for modeling error. To get a simple
and understandable example, we restrict this Pre-Study
to the two dimensional case. Only the substrates pig
manure and maize are assumed to be available.

Three questions are of interest:

1. What error measure should be used?

2. Does the Two-layer modeling approach improve
model quality?

3. Which (multi-fidelity-) modeling method, e.g..,
Kriging, Co-Kriging, diff or ratio model, works
best?

Please note, that approximately five percent of ran-
domly chosen substrate-mixtures may yield simulation
failures due to numerical instability. In this preliminary
study, such points are ignored, i.e., manually removed.
A more complicated imputation as described in Sec. 4.3
is only employed during the later optimization experi-
ments in Sec. 6.
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5.1. Experimental Setup
We perform four sets of experiments, where each

represents a different size of the experimental design.
In each set, two design types are created and evalu-
ated. Type one is a smaller LHD (size 5, 10, 15 and
20 points) evaluated with the fine function f f . Type two
is a very large LHD (always 100 points) evaluated with
the coarse function fc. The derived information is used
to build surrogate models of the fine function, i.e., f̂ f .
In both cases, h = 100 LHDs are created, and the one
with the largest minimum pairwise distance chosen.

To evaluate performance, we will look at the earlier
introduced error measures (MSE, SMSE). The consid-
ered surrogate models are standard Kriging, Co-Kriging
and a Neural Network approach (Quantile Regression
Neural Network QRNN [13]). QRNN and Kriging are
also tested with the earlier introduced simple multi-
fidelity approaches, that is, Input, Ratio and Difference
modeling (see Section 4.1.2). QRNN is introduced as an
alternative approach to determine whether certain obser-
vations are actually linked to the Multi-fidelity model-
ing approach, or rather to the employed model type.

It has to be noted that Co-Kriging is the most time-
consuming method. Since the model building takes less
than a second in any case, this is not significant in com-
parison to the cost of evaluation f f . However, in the
later optimization experiments runtime deserves more
attention, since the time-consumption will sum up over
all sequential optimization steps. Higher search space
dimension will also play an important role.

For each combination of error measure, design size
and chosen surrogate model, 20 repeats are performed.
The modeling error is estimated based on data from a
larger Latin Hypercube Design, consisting of 400 de-
sign points. This data set is not available during model
training. This validation is only performed for the pur-
pose of this research study and is not proposed to be per-
formed under real-world time-restrictions. This split-
sample approach with a large test-set allows to easily
detect differences that are only present in small regions
of the search space (e.g., the discontinuity in the search
space or the vicinity of the optimum). This is the main
reason why other popular model-independent error eval-
uation methods like cross-validation or predictive error
measures [51, 55, 42] are not used here. These may be
used for model selection where a large test set is not
available, as they may not require additional function
evaluations.

5.2. Results and Discussion
As a first result, Fig. 3 shows filled contour plots rep-

resenting the ADM1 ( f f ) and BMP ( fc) target functions,
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Figure 3: Contour plots of ADM1 and BMP model, based on 400
samples from a LHD. The two contour plots are both interpolated with
Two-layer Kriging, using data from 400 samples generated with LHS.
The depicted values are monetary daily gain in Euro, thus larger val-
ues are better.

respectively.
Here, both are interpolated with Two-layer Kriging,

using data from 400 samples created with LHS. In the
given region of interest, both show similar behavior.
While the BMP has only a slightly different shape, a
strong offset can be observed. Still, the optima of both
functions are not to far from each other. They are also
close to the discontinuity, hence the need for the Two-
layer approach.

To show the influence of the five different substrates
in the 5D optimization case, a sensitivity analysis is per-
formed. One simple indicator of the sensitivity to a cer-
tain variable is the parameter θ j ( with j = 1, ..., k, see
Eq. (3)), which specifies the width of the correlation
function. This parameter can be interpreted to deter-
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Figure 4: Sensitivity of the objective function value (gain in euro) to
changes in each parameter (substrate) over the normalized parameter
range. Values at −1 are the lower bound and 1 the upper bound of the
respective parameter. When one parameter is varied, all other param-
eters are fixed to the best solution observed. The optimal substrate
values are represented by the respective symbols close to the x-axis.

mine how active the modeled landscape is in the respec-
tive dimension. Table 2 shows estimated θ j values for
each substrate.

Table 2: Estimated θ j values for a model based on 400 evaluations of
the fine function (ADM1). Larger values indicate stronger activity of
the respective variable.

Maize Pig Ma-
nure

Grass
Silage

Corn-
Cob
Mix

Cow
Manure

3.85 1.72 1.58 2.29 0.02

It can be observed that Maize has the strongest impact
on the objective value, whereas Cow Manure seems to
have the least impact. As a further indication of the pa-
rameters sensitivity, Fig. 4 presents the sensitivity along
each dimension (biogas substrate). Here, all but one pa-
rameters are fixed at the value of the best known solu-
tion. The single remaining parameter is varied, and the
respective function values are depicted in the plot. The
plot verifies the results from the Table 2. For example,
cow manure has little influence, as the objective value
line is nearly horizontal in the plot. Maize and corn-
cob mix on the other hand may account for very large
changes, if they are varied.

The different scale of objective values visible in the

MSE: Kriging
MSE: Coarse Function

SMSE: Kriging
SMSE: Coarse Function

0.1 0.2 0.3 0.4

Figure 5: Depicted are SMSE and MSE of a Kriging model of the
fine function as well as the BMP model (coarse function) evaluated
by two different error measures. The Kriging model was built based
on a LHD of size 5. The process of creating the LHD design was
repeated 20 times. Smaller values are better.
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Coarse Function
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Figure 6: Again, all plots are based on LHD designs, repeated 20
times. Design sizes are in each header. The two-layer approach mod-
els values with and without manure bonus separately. Smaller values
are better.

contour plots indicates that SMSE should be preferred
over MSE. An unscaled error measure would not be a
fair comparison, as the optimum of the coarse function
is very close to the one of the fine one. Figure 5 shows
how this choice affects the estimation of quality, com-
paring MSE and SMSE of the coarse function to a Krig-
ing model of the fine function.

SMSE is better suited to evaluate the usefulness of the
model for optimization purposes. As shown in Fig. 3,
bad MSE values are caused by the saltus, although the
location of the optimum is very well approximated.

Figure 6 shows how SMSE results vary depending on
whether or not the Two-layer approach is used.

As expected, the model profits from using the Two-
layer approach, as it avoids the discontinuity introduced
by the manure bonus. The exception is the smallest de-
sign size of just five points. Here, no advantage is visi-
ble. Two reasons can be given. Firstly, the very sparse
design of five points will yield such a poor model that
the discontinuity becomes irrelevant. Secondly, it be-
comes unlikely that any of the five points is in the small
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Figure 7: These plots show how different multi-fidelity methods,
based on Kriging, perform in comparison to the coarse function and
the single-fidelity Kriging model. Diff. Kriging models the differ-
ences between coarse and fine function. Input Kriging uses the coarse
function values as an additional input variable. Smaller values for the
SMSE are better.

area of the region of interest, where manure bonus is
paid.

Figure 7 visualizes SMSE results of the different
multi-fidelity, i.e., Two-layer, modeling approaches.

In all cases, Co-Kriging outperforms the standard
Kriging model. Results for the Ratio model are not
shown. Their results were worst, and including them
in the figure would have made them hard to read. The
Difference- and Input-based models seem to work for
the smallest design size, but are later outperformed even
by standard Kriging. This is despite the fact that the
Difference-based model is the best for the smallest de-
sign size.

One peculiar observation in this context is, that the
Difference-based model does not seem to profit from
larger design sizes, whereas all other methods do. This
can be seen more clearly in Fig. 8. The reason for this
behavior is currently unclear and is subject of further
research.

As a final comparison in this preliminary study, Fig. 9
shows how choosing a different model type would affect
results.

For the smallest design size, Input QRNN outper-
forms Input Kriging, whereas the standard models show
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Figure 8: This plot uses the same data as Fig. 7 but for the Difference-
based multi-fidelity approach only. Smaller values for the SMSE are
better.
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Figure 9: This plot compares how choosing a different model
type (QRNN instead of single-fidelity Kriging) would affect results.
Smaller values for the SMSE are better.

no striking difference. For all larger design sizes, stan-
dard Kriging clearly works best. The previous observa-
tion that the Difference-based approach does not profit
from larger design sizes can be confirmed for the QRNN
model, too.

6. Main Study: Optimization Performance

6.1. Experimental Setup

To run the optimization experiments, the R-package
SPOT is used. Choosing parameters for the model-
based optimization process in SPOT is a hard optimiza-
tion problem. Tuning a model-based optimization algo-
rithm requires large computational effort. In case of an
expensive optimization problem this effort becomes too
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large to warrant the potential benefit. Therefore, we re-
strict the choice of parameters to one fixed set for all ex-
periments. Since the model-based approaches all share
several of these parameters, it can at least be expected
that the bias due to lack of tuning is not exceedingly
large.

In the following list, k is the number of optimized
substrates, that is, the dimension of the optimization
problem. The list contains the important parameters
which affect the optimization performance.

• Choice of surrogate model: The different models
are Kriging and Co-Kriging. The implementations
are taken from the R-package SPOT and are based
on the MATLAB R© code by Forrester et al. [18].

• Surrogate optimizer: While the objective land-
scape in the Pre-Study looked rather well-natured
and uni-modal, there is no guarantee that this holds
for any other scenario. Adding further substrates,
or changing the costs of certain substrates, may
easily introduce local optima. Furthermore, there
is no guarantee that a surrogate model of the uni-
modal landscape is unimodal. Due to model-
ing errors, additional optima might be introduced.
Therefore, it was decided to use DE to optimize
the surrogate landscape. DE is well suited to solve
multi-modal optimization problems. The used im-
plementation is the DEoptim Package in R.

• Surrogate optimizer population size: Population
size of the surrogate-optimizer (DEoptim) is cho-
sen to be 10k, which is the minimal suggested
value according to the DEoptim package documen-
tation.

• Surrogate optimizer budget: 500k evaluations of
the surrogate model are allowed for each sequential
step.

• Number of Function evaluations (fine): The
number of evaluations of the fine function (ADM1)
is limited to 5k.

• Design creation: Experimental designs are cre-
ated with LHS.

• Initial Design size (fine): From the 5k budget, 3k
evaluations are used for the initial design.

• Design Size (coarse): 50k points are evaluated on
the coarse function only. In addition, the coarse
function is evaluated at every point where the fine
function is evaluated, leading to an overall number

of 55k evaluations of the coarse function at the end
of an optimization run.

• Infill criterion: The chosen infill criterion is the
mean predicted by the Kriging models. To make
best use of the very small budget, expected im-
provement (EI) is not used, thus the optimization
may focus on exploitation only. This results in
a greedy strategy, i.e., exploitation dominates ex-
ploration of the search space. The benefit of this
choice was validated in pre-experimental studies.

Based on the results from the preliminary study, it
was chosen to test only Co-Kriging as the best per-
forming multi-fidelity method. To get an estimate of
the performance improvement this yields, Co-Kriging is
compared against the basic Kriging approach. Both are
tested once with and once without a fixed point in the
initial design. That point is the optimum of the coarse
model, which is cheap to determine.

Furthermore, two other methods were chosen as base-
lines in the comparison. Due to the strict budget limi-
tations, DE was not considered here. Instead, Simplex
and LHS are compared to the model-based approaches.
The former is a good local optimizer, while the latter is
more globally oriented. LHS can be viewed as an ap-
proach that has to be beaten by any reasonable search
strategy, because it simply selects the best out of a set
of randomly generated solutions. Simplex may be un-
beatable by the competing approaches if the target func-
tion is of a sufficiently simple structure. Compared to
the surrogate-supported approaches, LHS and Simplex
have little overhead. To make use of the coarse function,
LHS and Simplex use its optimum as a starting point.

As Simplex and LHS do not employ models, failures
of the fine function evaluations will be compensated by
using a constant penalty value of 5,000 e. Otherwise
the imputation method described in Sec. 4.3 is used.

6.2. Analysis

Table 3 summarizes the parameters of the best so-
lutions found in any experiment. In both 2D and 5D
optimization, the optimal amount of manure is cho-
sen to barely reach the required level for the manure
bonus. When two substrates are optimized, the amount
of maize is thus the largest part of the mixture, yield-
ing a daily gain of roughly 1,770 e per day. Optimiz-
ing five substrates at the same time yields a better re-
sult of 1,987 e. Here, maize is mostly replaced with
grass silage which is not that expensive and therefore
has a better cost-benefit ratio. Nevertheless, one of the
disadvantages of using a high amount of grass silage is
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Table 3: Overall optimal solutions found.

Parameter 2D 5D

Gain [e/d] 1,770 1,987

Maize [m3/d] 22.85 5.22
Pig Manure [m3/d] 11.85 11.48

Grass Silage [m3/d] 0 18.98
Corn-Cob-Mix [m3/d] 0 0.01

Cow Manure [m3/d] 0 0.08

Manure Bonus yes yes

Ammonia Digester [mg/l] 163.4 216.6
Ammonia Post-digester [mg/l] 291.0 464.2
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Figure 10: Final results of 2D optimization. Larger values are better.
Results are based on 20 repeats of each optimization run. The up-
per plot shows results where the initial design (or starting guess) was
created in a random fashion. For the lower plot, the initial guess (or
at least one point in the initial design) was set to the optimum of the
coarse objective function.

its high nitrogen content. In the digester the nitrogen
is released and becomes ammonium and ammonia. As
ammonia is toxic for the bacteria a too high concentra-
tion in the digester must be avoided. While this effect
is respected by the ADM1, plant operators will still pre-
fer mixtures resulting in lower ammonia concentrations.
Hence, future studies may be conducted that consider
ammonia as a second objective or as a constraint. A
coarse model to calculate ammonia concentration would
be to use the extended Buswell equation.

The performance of the different model-based and
model-free approaches is compared for the 2D-case in
Fig. 10. It can be seen that Co-Kriging works much bet-
ter in comparison to the standard Kriging model. After
the specified budget is exhausted, both outperform Sim-
plex in the case where no start point is derived from the

coarse function optimum. In this case, Simplex shows a
very large variance caused by the random start point.

When the optimum of the coarse function is used to
initialize the different methods, Simplex becomes com-
pletely deterministic. All methods perform better than
LHS. The median of the plain Kriging approach is ap-
proximately the same as the Simplex performance. Co-
Kriging is better than both.

Figures B.14 and B.15 in the appendix show the same
results for the 2D case, but include results after each sin-
gle evaluation. That way, the convergence progress can
be observed. Note, that in this case, the LHS approach
evaluates the promising candidate solution determined
with the BMP model last. Similarly, the model based
approaches evaluate the same candidate solution always
after the non-deterministic candidates in the initial de-
sign. This is the reason for the respective lack of vari-
ance after ten (LHS with BMP) and six (Kriging/Co-
Kriging with BMP) evaluations. Kriging requires about
9 and Co-Kriging 8 solutions to be competitive with the
Simplex (all with BMP start point). While choosing
a start point with BMP is essential for quicker conver-
gence with the basic Kriging model, Co-Kriging seems
to be less reliant on that. This can intuitively be at-
tributed to the fact that Co-Kriging already has other
ways of exploiting the BMP model information.

At a first glance, the situation does seem to be very
similar for the larger search space of five parameters.
The results of the 5D-case in Fig. 11 seem to show the
same behavior as the 2D runs. Again, more detailed
figures B.17 and B.16 in the appendix compare objec-
tive function values against number of evaluations. For
this case, the advantage of choosing a start point with
the BMP model seems to be more even more advanta-
geous. All methods with random start points are not
competitive. In contrast to the 2D-case the Co-Kriging
based optimization now also profits more clearly from
the start point determined by BMP. Compared to the ba-
sic Kriging model, the Co-Kriging model requires two
expensive simulations less to receive similar results to
the deterministic Simplex approach.

It is important to note, that Fig. 10 and Fig. 11 show
results after an equal number of function evaluations,
i.e., after the budget is expended. This does not take run-
time into consideration. In case of the 2D-optimization
there is nearly no difference in runtime between the dif-
ferent model-based approaches. This observation can
not be made for the 5D case. Here, due to the much
larger coarse design sizes, the model building becomes
expensive. This can be seen in more detail from Tab. 4,
which compares the net time used by the optimization
algorithm runs in the 2D and 5D case. In fact, build-
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Figure 11: Boxplot of final results for the 5D optimization with equal
number of fine objective function evaluations. Larger values are
better. Results are based on 20 repeats of each optimization run. The
upper plot shows results where the initial design (or starting guess)
was created in a random fashion. For the lower plot, the initial guess
(or at least one point in the initial design) was set to the optimum of
the coarse objective function.
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Figure 12: Boxplot of final results for the 5D optimization with equal
runtime. Larger values are better. Results are based on 20 repeats of
each optimization run. The upper plot shows results where the initial
design (or starting guess) were created in a random fashion. For the
lower plot, the initial guess (or at least one point in the initial design)
was set to the optimum of the coarse objective-function.

ing and optimizing the Co-Kriging model now takes a
similar effort as single evaluation of the fine function
(ADM1).

Hence, Fig. 12 shows a comparison which is based
on results after an equal runtime of roughly 25 min-
utes. While this does not affect the model-free optimiza-
tion algorithms, Co-Kriging is not significantly different
from the standard Kriging model any more.

The main reason for the difference in time-
consumption is the large computational effort spend on
building a model with data of 250 (initial design: 50k,
Section 6.1) evaluations of the coarse function, or more.

This is not done with Kriging, which still remains com-
paratively cheap. Co-Kriging however suffers from a
strong increase in time consumption. Careful tuning of
parameters (e.g., design sizes) may avoid this issue, but
would be extremely expensive and thus undesirable.

Finally, Table 4 summarizes the attained best objec-
tive function values (gain) and required gross and net
times taken by the optimization algorithms as well as
the number of failed simulations. Co-Kriging provides
the best median performance for the 2D and 5D case.
In the 2D case, it is also the fastest with respect to gross
time, while it clearly has the worst net time. This contra-
diction can be explained by the fact that good substrate
settings will usually require less simulation time2.

In some cases, a single simulation of an inappropriate
substrate mixture may take up to 10 minutes. Clearly,
avoiding these cases seems to be worth the invested net
time, at least in case of the 2D runs. At the same time,
it has to be considered that the values of the Simplex
runs with deterministic start point are based on a single
run. Hence, they may even be outliers. This issue is
stressed by the fact, that the deterministic Simplex run
used much more gross time than the one with random
start point (2D case). This single, deterministic Sim-
plex run had one failed simulation (aborted after 600
seconds), which accounts for the difference to the non-
deterministic runs. These do also have such outliers,
but the depicted median value is not that much affected
by those. On the other hand, the deterministic Simplex
run in the 5D case did not encounter a failed simula-
tion, hence yielding a gross time of barely more than 25
minutes.

The net time required is larger for the model based
approaches, as expected. As stated earlier, the net time
required by the Co-Kriging model is larger, but differ-
ences in case of the 2D problem are negligible. Still,
the detrimental explosion of net time required by the
Co-Kriging based 5D optimization runs becomes evi-
dent from the data in Table 4.

Overall, the results show both the advantages as well
as the disadvantages of using multi-fidelity information.
Essentially, the use of the coarse function is shown to
be useful for deriving a reasonable start-point for the
optimization. Also, integrating the coarse function by
the means of Co-Kriging does increase performance, if
measured on a per-evaluation basis. Despite this suc-
cess, evaluating the results based on actual runtime re-

2The variance in simulation time is mostly due to the substrate
mixture. Repetition of a simulation usually yields very similar simu-
lation times. Simulation time and function values (gain) are negatively
correlated, although only weakly.
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Table 4: Results of all optimization approaches. Depicted are median
values attained after 25 fine function evaluations, in 20 optimization
experiments for each method. Only the F column is not a median, but
the sum of all simulation failures over all experiments. In the method
column, BMP means a deterministic start point (optimum of the BMP
model) is used, whereas ran means a random start point. k is the
dimensionality of the problem. The objective value Gain is in Euro per
day. GT is the gross time taken by the optimization run (duration of
complete run) in seconds. NT is the net time used by the optimization
algorithm (gross time minus the time taken by all required ADM1
simulations) in seconds. Bold numbers are the respective best median
for the 2D and 5D case. Note that Simplex (BMP) is deterministic,
hence all values are based on a single optimization run.

method k Gain GT NT F
Simplex (ran) 2 1554 898.24 0.37 1
Simplex (BMP) 2 1751 1451.61 0.41 0
LHS (BMP) 2 1553 975.49 0.32 1
Kriging (ran) 2 1702 909.30 10.68 2
Kriging (BMP) 2 1755 895.94 10.66 0
Co-Krig. (ran) 2 1757 861.50 15.20 2
Co-Krig. (BMP) 2 1760 805.76 15.08 0
Simplex (ran) 5 1760 2779.87 0.92 7
Simplex (BMP) 5 1958 1594.88 0.98 0
LHS (BMP) 5 1620 3156.73 0.88 0
Kriging (ran) 5 1808 2763.89 53.16 2
Kriging (BMP) 5 1963 2615.60 53.51 4
Co-Krig. (ran) 5 1917 2980.53 293.60 4
Co-Krig. (BMP) 5 1968 2877.09 288.97 1

veals an important issue. Co-Kriging becomes very
slow, especially for higher dimensions and number of
(coarse or fine) observations. Since the presented appli-
cation of biogas substrate feed optimization is not ex-
tremely expensive, model and target function runtime
may have the same order of magnitude. Hence, the re-
sulting performance gain due to the Co-Kriging model
is nearly negligible. In essence, such a trade-off be-
tween model and objective function runtimes can not
be avoided with multi-fidelity approaches. Clearly, the
whole purpose of using multi-fidelity models is to in-
crease performance by use of additional information. In
turn, this will always lead to increased complexity of the
derived model. Whether or not such a model is useful
will necessarily depend on the runtime of the objective
function.

7. Summary and Outlook

The experiments showed that the employed ap-
proaches can be successful in building cheaper yet quite
accurate models of the concerned biogas plant opti-
mization problem. Therefore, Question (Q-1) can be

affirmed. In detail, Co-Kriging based on cheap eval-
uations from a basic biomethane potential model was
shown to improve the model quality, compared to a stan-
dard Kriging model based on evaluations of an accu-
rate ADM1 based simulation model only. Furthermore,
model quality could be improved by using a Two-layer
approach, thus avoiding discontinuities in the searched
landscape.

Besides these successes in improving surrogate
model quality, their application in an optimization pro-
cess proved to be more difficult. In detail, time con-
sumption of Co-Kriging proved to be too large in case
of a 5-Dimensional optimization problem. On the other
hand, Co-Kriging was still successful in the case of a 2-
Dimensional problem formulation. The core issue here
is the trade-off between computational effort of the ob-
jective function (ADM1) and the surrogate-model op-
timization procedure. Should the optimization be sub-
ject to tighter time-constraints or a more expensive ob-
jective function, Co-Kriging based optimization may be
profitable even in the higher-dimensional case. This de-
pends on the kind of control problem to be solved in
practice.

Apart from that, the integration of cheaply avail-
able data was shown to be very profitable. That is, all
tested methods benefited from using a coarse represen-
tation of the target function to generate a promising ini-
tial solution. Using this initialization method, a sim-
ple Downhill Simplex method was shown to be as ef-
ficient as the more complex model based approaches.
This comparison does however require to be investi-
gated in more detail. Since Downhill Simplex, with
a fixed start point, is completely deterministic, while
the model-based approaches are not, the comparison
does not provide any information on statistical signif-
icance. Without a fixed starting point, the surrogate-
model-based approaches proved to be much more effi-
cient than the Simplex method. Summarizing, detailed
answers to Question (Q-2) were presented in this study.

For future research, it is therefore commendable to
use test cases with larger variety. The herein presented
research is based on a simulation for a specific com-
bination of plant parameters, substrate costs, substrate
parameters and environmental parameters. For other
plants, the initialization with the cheaper BMP model
may not work that well, or the searched landscape can
become more complex.

As mentioned previously, the larger amount of am-
monia in the sludge may make the obtained optimum for
the 5D optimization undesirable to plant operators. The
amount of ammonia can therefore be included as a con-
straint or even as a secondary objective. In both cases,
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it may again be modeled with data-driven approaches
like Kriging, to cheapen the evaluation of the constraint
or secondary objective, respectively. In the same way,
there are other details of additional parameters which
may require to be included. In previous studies [56, 60]
these were included in a weighted sum of objectives.
Since the weights are hard to set, a multi-objective ap-
proach may make more sense. Of course, the compu-
tational effort of a surrogate-model-based approach will
increase, since a separate model has to be built for each
objective. At the same time, classical approaches like
the Simplex method are not applicable anymore.
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17N0311) and CIMO (FKZ 17002X11).

Appendix A. List of Symbols

costenerg. cost of energy used in plant operation (e.g.,
stirring of digester content, substrate transporta-
tion, heating of digester)

costsubs. cost of substrates

C covariance matrix used in the Co-Kriging model

c vector of covariances of a new sample with the ex-
isting samples known to the Co-Kriging model

f objective function

f f fine (accurate, expensive) simulation of the objec-
tive function

fc coarse (inaccurate, cheap) simulation of the objec-
tive function

h Parameter of the Latin Hypercube Sampling ap-
proach. Number of times Latin Hypercube designs
are randomly created, before choosing the one with
the least pair-wise distance of samples.

k dimensionality of the decision space, i.e., the num-
ber of biogas substrates

n number of observations / number of data points

m dimensionality of the system state space vector

M̂ fit of a surrogate model

fM function used to learn/build a surrogate model

ψ vector of correlations of a new sample with the ex-
isting samples known to the Kriging model

Ψ correlation matrix used in the Kriging model

revelect. revenue from selling electrical energy pro-
duced in combined heat and power plants

revtherm. revenue from selling thermal energy pro-
duced in combined heat and power plants

ρ scaling parameter used in the Co-Kriging model

t time step

θ parameter vector of the Gaussian correlation func-
tion

p parameter vector of the Gaussian correlation func-
tion

x input vector of length k, i.e., the optimized sub-
strate feed values

xlo lower boundary of the decision variables (sub-
strate feed values)

xup upper boundary of the decision variables (sub-
strate feed values)

y observed objective function value

y vector of observed objective function values of
length n

z state space vector of length nz, i.e., state of the bio-
gas plant

z0 initial state of the biogas plant system

Z system state space

X input parameter space

Appendix B. Additional Figures and Tables
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Figure B.13: Boxplots depicting the evaluation time of the ADM1
simulation (fine function) in seconds, split by the dimensionality of
the problem (i.e., number of substrates).
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Figure B.14: Boxplot of 2D optimization performance after each eval-
uation performed. Larger values are better. Results are based on 20
repeats of each optimization run. The red line presents the perfor-
mance of the simplex run with deterministic start point.
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Figure B.15: Boxplot of 2D optimization performance after each eval-
uation performed, focusing on best performin methods after the initial
6 evaluations. Larger values are better. Results are based on 20 re-
peats of each optimization run. The red line presents the performance
of the simplex run with deterministic start point.
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Figure B.16: Boxplot of 5D optimization performance after each eval-
uation performed, focusing on best performing methods after the ini-
tial 15 evaluations. Larger values are better. Results are based on 20
repeats of each optimization run. The red line presents the perfor-
mance of the simplex run with deterministic start point.
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Figure B.17: Boxplot of 5D optimization performance after each eval-
uation performed. Larger values are better. Results are based on 20
repeats of each optimization run. The red line presents the perfor-
mance of the simplex run with deterministic start point.
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