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Abstract

Many relevant industrial optimization tasks feature more than just one
quality criterion. State-of-the-art multi-criteria optimization algorithms
require a relatively large number of function evaluations (usually more
than 105) to approximate Pareto fronts. Due to high cost or time con-
sumption this large amount of function evaluations is not always available.
Therefore, it is obvious to combine techniques such as Sequential Param-
eter Optimization (SPO), which need a very small number of function
evaluations only, with techniques from evolutionary multi-criteria opti-
mization (EMO). In this paper, we show how EMO techniques can be
e�ciently integrated into the framework of the SPO Toolbox (SPOT).
We discuss advantages of this approach in comparison to state-of-the-art
optimizers. Moreover, with the resulting capability to allow competing
objectives, the opportunity arises to not only aim for the best, but also
for the most robust solution. Herein we present an approach to optimize
not only the quality of the solution, but also its robustness, taking these
two goals as objectives for multi-criteria optimization into account.

1 Introduction

In many fields of industrial optimization, the duration of a process feedback
plays a dominant role in the optimization process. Large evaluation times,
caused by slow real-world processes or large computational processing times,
restrict optimization processes to only a very limited number of such evalua-
tions. Moreover, almost every industrial optimization task features more than
one quality criterion. Techniques from multi-criteria decision making, evolu-
tionary multi-criteria optimization in particular, were developed during the last
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decade to solve such tasks. The necessity to combine EMO techniques and
optimization methods such as SPO [2], which require a very small number of
function evaluations only, should be self-evident.

A typical real-world application is the optimization of structural parameters
and process parameters of industrial process plants. In a recent research project,
preparations are made to apply Multi-criteria SPOT (MSPOT) to the opti-
mization of dust separators for coal power plants. Such cyclones are large steel
structures used to filter dust from the exhaust gas flow of coal power plants. An
optimal cyclone combines the conflicting goals of high filtration e�ciency with
low pressure loss. The behavior of cyclones can be simulated with a high degree
of accuracy by using computational intensive numerical methods, such as multi-
phase computational fluid dynamics. Even if executed on a compute cluster,
a single computational fluid dynamics run will require from several minutes to
hours of processing time, severely limiting the number of possible evaluations.

Another well-known application of SPOT is the tuning of algorithm param-
eters. Here, not only one, but two or more objectives can be of interest as well.
This study therefore presents Multi-Criteria Optimization (MCO) with SPOT.
The three main topics of this paper are:

1. Outlining an approach to apply SPOT to MCO problems.
2. Comparing MSPOT to state-of-the-art algorithms in the field. Test situ-

ations should reflect aspects of industrial tuning problems such as costly
function evaluations.

3. Testing how well the robustness of tuning algorithm parameters with
SPOT can be increased by considering quality and standard deviation
as objectives.

Research in combining MCO and surrogate model optimization is not a new
topic. Various research in this topic has been performed (cf. [13]). In particular,
Voutchkov and Keane [16] introduced a multi-criteria approach for sequentially
improving on surrogate models, and tested it on simple multi-criteria functions
with very few function evaluations. Their approach is similar to MSPOT and
uses a subset of the test functions considered in our study, however, restricted
to low dimensional decision spaces. Also, SPOT has previously been applied
to multi objective optimization, but not as an MCO algorithm itself, but as a
tuner for such an algorithm. TODO CITE?

The research goals are presented in more detail in Sec. 2. Section 3 gives an
introduction to the topic of MCO. The following Sec. 4 describes how MCO
can be integrated into SPOT. The settings for an experimental study on this
approach are described in Sec. 5. Results of these experiments are reported and
analyzed in Sec. 6 and Sec. 7. The paper concludes with a summary and an
outlook.

2 Research Goals and Questions

The goals of this experimental study can be formulated as two research ques-
tions.
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Research Question 1 Is there a competitive advantage of MSPOT over state-
of-the-art MCO algorithms?

It is of interest if MSPOT can compete with or even outperform state-of-the-art
MCO algorithms. Outperform means to reach higher hypervolumes on multi-
criteria test problems. As stated above, target functions for real-world opti-
mization problems can be very costly to evaluate. Therefore, the test problems
are restricted to few function evaluations, i.e., a few ten or few hundred func-
tion evaluations are feasible. To show development beyond these limits we
chose to test up to a maximum budget of 1000 function evaluations. The state-
of-the-art MCO algorithms in this comparison are chosen to be NSGA2 and
SMS-EMOA. The experimental analysis related to Research Question 1 will
be referred to as Case Study I in the following.

Research Question 2 Is MSPOT’s multi-criteria model optimization approach
advantageous for robust parameter optimization?

Robustness can be defined by using the following goals (we consider minimiza-
tion problems in this study): (i) to minimize the mean Y (or expectation) of
the objective function values, and (ii) to minimize the standard deviation sd(Y )
of these objective function values.

If optimization of Y is chosen as the only objective, an undesirable solution
might be considered to be optimal due to noise. On the other hand, if mini-
mization of sd(Y ) is chosen as the only objective, a solution might be found,
which may not be optimal. It is insu�cient to optimize the expectation or to
minimize the standard deviation only in the search for robust optimal solutions.
The trade-o↵ between optimality and standard deviation plays a central role in
nearly every optimization problem.

This paper considers the search for robust solutions as a multi-criteria op-
timization problem. To this end, a measure for robustness based on sd(Y ) of
the objective function in the presence of noise has been introduced. Jin and
Sendho↵ [14] use a variance-based robustness measure to deal with the search
for robust solutions as a multi-criteria problem. The main advantage of multi-
criteria approaches to the search for robust optimal solutions over the existing
ones is that the user is able to make a choice among a set of solutions and
select those that can deal best with the problem at hand. The experimental
analysis related to Research Question 2 will be referred to as Case Study II in
the following.

3 Multi-Criteria Optimization

The field of MCO can be separated in di↵erent parts. One separation is based
on the fact whether preferences of a decision maker are incorporated in the
optimization process before or after the application of optimization algorithms
(a-priori vs. a-posteriori approaches). The most influential methods in the
last decade for the a-posteriori approach (decision making after application of
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algorithms), which are also incorporated in this paper, are EMO Algorithms
(EMOA). [8, 7] The space, which is covered by a front of non-dominated solu-
tions (Pareto front), turned out to be a standard quality indicator for EMOA
results. Moreover, it was incorporated for selection within EMOA in recent
years. One of such implementations is SMS-EMOA [4], which, next to other
implementations, is on the way to replace the former standard NSGA2 [8].
Therefore, the MSPOT approach, which is developed in this paper, is com-
pared to both of these algorithms, i.e., NSGA2 as well as SMS-EMOA.

4 Multi-Criteria Optimization with SPOT

To understand how MSPOT extends the single-criteria SPOT approach, the
latter will be introduced first. As a first step, SPOT generates an initial design
of several points and evaluates it on the optimization problem function. Based
on these evaluation results, SPOT builds a surrogate model (e.g., linear, Krig-
ing, or tree-based models). Two approaches can be used to exploit that model.
(i) The naive approach samples a large number of points in the decision space.
Those points are then evaluated on the surrogate models and the best will be
suggested for evaluation on the problem function. (ii) More sophisticated ap-
proaches use well-known optimization techniques to find the optimum of the
surrogate model.
Related design points are evaluated on the costly problem function. This pro-
cess of building and exploiting the surrogate model is repeated sequentially until
a termination criterion is fulfilled. Algorithm 1 presents a formal description
of the MSPOT scheme. This scheme discriminates the two phases of SPOT,
namely the generation of an initial design (lines 1–5) and its sequential model
based improvement (lines 6–14).

In Phase 1, SPOT determines a design of initial points in the decision space
and evaluates each point k0 times on the problem function. Here, in contrast to
the single-criteria SPOT, evaluation yields not a scalar result for each design
point, but a vector. Each element is one of n objective values to be optimized.
Phase 2 consists of the following loop:

1. Build a model M for each of the n objectives from the evaluated design
points.

2. Generate a (large) set of l design points ~X 0 by Latin hypercube sampling
and compute their utilities ~Y 0 by evaluating them on the model(s).

3. Select a = | ~X 00| (which has to be smaller than l) seemingly Pareto optimal
design points from the large design. This cannot be achieved by sorting
the results ~Y 0, because two or more objective values are known for each
sampled design point. Instead, the design points are first sorted by their
non-dominated sorting rank, i.e., all values on the current Pareto front
get the lowest rank, then are removed. The Pareto front of the remaining
points gets the next higher rank. This is repeated until all points in the
objective space are ranked. This will assign the same value to all points
on an individual Pareto front. If the settings of MSPOT require less
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Algorithm 1: MSPOT

// phase 1, building the first design:

1 let O be the optimization problem with d decision variables and n objectives;

2 generate an initial design ~

X := {~x1
, . . . , ~x

m} with ~x 2 Rd of m design points;
3 fix k := k0 to be the number of tests for determining estimated utilities;

4 foreach ~x 2 ~

X do

5 evaluate O with ~x k times to determine the estimated utilities ~y of ~x, where
~y 2 Rn;

// phase 2, build, use and improve models:

6 while termination criterion not true do

7 build n surrogate models Mi, i 2 {1, . . . , n}, based on ~

X and
~

Y := {~y1, . . . , ~ym};
8 generate a set ~

X

0 of l new design points by latin hypercube sampling;

9 foreach ~x

0 2 ~

X

0
do

10 determine the predicted utility for each model with ~y

0 := M(~x0);

11 select best set ~

X

00 of a design points from ~

X

0 based on non-dominated
sorting rank and hypervolume contribution (a ⌧ l);

12 foreach ~x

00 2 ~

X

00
do

13 evaluate O with ~x

00
k times to determine the estimated utility ~y

00 of ~x00;

14 extend the design by ~

X := ~

X [ ~

X

00 and ~

Y := ~

Y [ ~

Y

00;

15 with ~

Y create Pareto front ~

P which contains all non-dominated points;

values than are available for the current non-dominated sorting rank, a
tie breaker has to be introduced. This is solved by calculating the hy-
pervolume contribution of each point, and removing those points with the
smallest contribution. The contribution is recalculated after each removal,
since hypervolume contribution might change for di↵erent subsets of the
Pareto front.

4. The selected points ~X 00 are added to the design and evaluated on the
problem. The loop starts over if the termination criterion is not reached.

Once the termination criterion is reached, the final Pareto front can be computed
from the archive of design values. That is, all non-dominated points are reported
to the user. This whole scheme represents the naive sampling approach. In case
the naive approach is not to be used, well known MCO techniques such as
NSGA2 or SMS-EMOA can be applied. These search the surrogate models
M for Pareto optimal points. To avoid further sorting problems the population
size of these MCO methods is set to the desired number of design points, say
a, to be used in the next evaluations on the optimization target function. A
budget for the model optimization has to be specified by the user.

More complex features of SPOT could be used, like increasing the repeats
k on each design point to improve estimation on noisy problems. Consequently,
this means that the best design points so far are also run again to obtain a
comparable number of repeats. For simplicity the MCO approach only uses a
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Figure 1: The general MSPOT loop

fixed number of k0 repeats. The general MSPOT loop is illustrated in Fig. 1.

5 Experimental Settings

The multi-criteria version of SPOT, as established above, is tested in two dif-
ferent scenarios. In the first case, typical MCO test functions are optimized by
MSPOT, and the results are compared to established MCO algorithms. This
is done to evaluate the quality of the approach in general, under the assumption
of a minimal available budget. The second case is a new application of MCO.
Here, the MSPOT approach is used for robust tuning of algorithm parameters
by considering both expectation and standard deviation as quality criteria.

5.1 Case Study I. Comparison

To compare MSPOT with state-of-the-art MCO algorithms, a comparison with
NSGA2 and SMS-EMOA was performed on MCO test functions, namely
ZDT1 to ZDT3, DTLZ1, and DTLZ2. [17, 9] Test functions and their rele-
vant settings are summarized in Table 1. As mentioned earlier, Voutchkov
and Keane [16] proposed an approach, which is somehow related to MSPOT.
Amongst other they also tested on ZDT2 , although with a lower decision-space
dimension. Figure 2 exemplifies that MSPOT can approximate Pareto fronts
with very little evaluations on their use case. The experiments described here
however, consider a higher dimensional decision space to see if MSPOT can
also improve on significantly harder problems with less evaluations. Though
the used functions are not explicitly hard problems, increasing the dimensional-
ity raises the challenge for the employed algorithms. With the limited budget,
it is unlikely for any method to approximate the real Pareto front adequately.
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Figure 2: Attainment surfaces plotted with ”eaf” package in R. Based on 10 runs
with MSPOT on two dimensional ZDT2, with exactly 40 function evaluations.

The settings used for the MSPOT runs are listed in Table 2. The number of
repeats k is fixed to a value of one, because the test functions are not noisy.

Three surrogate models are used by MSPOT for this experiment, i.e.,
1. spotPredictForrester (sFo): Kriging model for R based on the Matlab

code by Forrester et al. [10]. The model uses CMAES [12] to find its
parameters.

2. spotPredictRandomForest (sRF): Random Forest model from the R pack-
age1 ”randomForest” which is based on Breiman and Cutler’s original
Fortran code for classification and regression [5].

3. spotPredictEarth (sEA): Multivariate adaptive regression splines (MARS) [11]
provided by the ”earth” R-package.

All models are used with default settings. Consequently, the MARS model only
considers linear terms without interactions. It has to be noted that SPOT keeps
an archive of non-dominated solutions. It often yields more points than NSGA2
and SMS-EMOA since these are limited by their population size. Therefore,
the Pareto front based on this archive has to be reduced. Reducing the number
of points in the front avoids bias towards the MSPOT approach.

1SPOT and all other used R packages can be retrieved from the CRAN homepage, i.e.
http://cran.r-project.org
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Table 1: Multi-criteria test functions in use. Dimensions d and n name the
dimensions of the decision space and the objective space. The reference point is
used for calculating the hypervolume indicator at the end of each optimization
run. The decision space is bounded by 0 and 1.

Function Dimension (d,n) Reference Point

ZDT1 (30,2) (11,11)
ZDT2 (30,2) (11,11)
ZDT3 (30,2) (11,11)
DTLZ1 (7,3) (1000,500,500)
DTLZ2 (12,3) (11,11,11)

Table 2: Additional setup of MSPOT
Parameter setting in MSPOT

init.design.size m 100
init.design.repeats k0 1
seq.design.maxRepeats k 1
seq.design.new.size a 32
seq.predictionModel.func M ”spotPredictForrester”

”spotPredictRandomForest”
”spotPredictEarth”

seq.predictionOpt.budget 1000
seq.predictionOpt.method ”nsga2”

For SMS-EMOA, an implementation by Mersmann2 was used. ForNSGA2,
the implementation from the ”mco” package was used in our study. Population
sizes of NSGA2 and SMS-EMOA were chosen to be in line with the design size
a. Besides that, all settings of SMS-EMOA and NSGA2 were left at default
values.

In many real-world problems, the number of available function evaluations
is very restricted. This is in contrast to typical MCO test functions, which are
usually optimized invoking several thousand of function evaluations. To reflect
real-world settings, the number of function evaluations will be set to 100, 500,
and 1000 in our experiments. It is the scope of this paper to identify EMOA
that cope with very small numbers of fitness function evaluations available in
the industrial applications of interest. Since low budgets would limit the number
of generations, the population size (”seq.design.new.size” for SPOT) is changed
along with the budget (size 4 with budget 100, size 16 with budget 500 and size
32 with budget 1000).

2Available at: https://git.p-value.net/emoa.git/plain /examples/sms emoa.r
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Figure 3: Experimental setup. The first layer comprehends the set of test
functions. The optimization algorithms (O) with related designs ( ~X) belong to
the second layer, whereas SPOT is in the third layer.

5.2 Case Study 2. Multi-Criteria SPOT

The second case study tries to use the MSPOT established above to tune algo-
rithms, namely an Evolution Strategy (ES) and Simulated Annealing (SANN).
The first objective for tuning is the quality of ES or SANN (minimal expected
test function value) based on design points ~x (algorithm parameters) found by
SPOT. The second objective is the standard deviation of the y’s, to evaluate
the robustness of the parameter setting ~x. MSPOT considers both objectives.
In this case, we consider a run of an algorithm, such as ES or SANN, as an
optimization problem O. This situation is depicted in Fig. 3. The test func-
tions (Layer 1) are optimized by SANN or ES (Layer 2) which again are tuned
by SPOT or MSPOT (Layer 3). Starting with Layer 3, we will discuss the
corresponding experimental setups.

5.2.1 Pre-experimental Planning: Problem Complexity and Struc-

ture

To gain insight into the problem complexity and structure, we performed a sweep
over the search space. Ten thousand runs of the algorithms were executed, i.e.,
1000 design points were evaluated ten times. For each design point, mean value
and standard deviation were calculated. Here, Y denotes the mean value of k
runs of the algorithms, and sd(Y ) its standard deviation.

For example, if an ES with parameter set ~x is run ten times with di↵erent
seeds on Rosenbrock’s function, we obtain ten function values y1, . . . , y10. As
can been seen from Table 5, we are considering minimization problems, i.e.,
smaller y values are better.
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Table 3: Layer 3. Setup of multi- and single-criteria SPOT for tuning ES and
SANN

Parameter MSPOT SPOT

spot.ocba FALSE TRUE
auto.loop.nevals 200 200
init.design.size m 10 10

init.design.repeats k0 5 5
seq.design.size l 1000 1000

seq.design.new.size a 5 3
seq.design.oldBest.size 0 2

seq.design.maxRepeats k 5 Inf

5.2.2 Experimental Setup

Experimental Setup on Layer 3. The multi-criteria MSPOT approach is
compared to the standard, single-criteria SPOT approach. To evaluate the
quality of this approach, the resulting Pareto fronts will be compared against
the standard deviation and mean quality of a single objective run of SPOT. This
run will use optimal computational budget allocation (OCBA) [6] and thus also
consider standard deviation in a way. For OCBA, standard deviation will play
a role in deciding how often a certain setting is to be evaluated [1]. However,
the standard deviation is not considered with single-criteria SPOT and OCBA
for the selection of new points. Thus, it is of interest to see how the one best
setting found by SPOT and OCBA compares to the front of MSPOT. The
settings used for the multi- and single-criteria SPOT runs are listed in Table 3,
the surrogate models are the same as described beforehand. The sequentially
generated surrogate models are optimized using the sampling approach as de-
scribed in Algorithm 1. The surrogate models themselves are not optimized by
means of MCO. This ensures a fair comparison of the multi- and single-criteria
approaches, because the choice of completely di↵erent optimization techniques is
avoided. The standard deviation recorded for each design point of the MSPOT
runs is based on k = k0 = 5 repeats. For OCBA k is increased as needed by
SPOT. Therefore, the best design point of the single-criteria SPOT run will be
reevaluated to ensure that its standard deviation is based on the same number
of repeats.

Experimental Setup on Layer 2. ES and SANN are allowed to use 100
function evaluations of the test functions. For SANN, the optim function in
R is used, which also includes a simulated annealing version as described by
Belisle [3]. SANN requires a start point, which is chosen deterministically as
mentioned above. All algorithm settings are left at default, besides TMAX and
TEMP which are both tuned by SPOT with the region of interest as specified by
Table 4. TEMP is the starting temperature and TMAX indicates the maximum
number of function evaluations for each temperature.

ES internally creates a random starting population based on the bounds

10



Table 4: Layer 2. ES and SANN Parameters, which are tuned
Algorithm Parameter lower bound upper bound

ES µ 2 10
ES ⌫ 2 10
ES ⌧ 1 1.5

SANN temp 1 100
SANN tmax 1 100

Table 5: Layer 1. Description of two dimensional single objective test functions
used in experiments for tuning ES and SANN

Function Start point lower bound upper bound

Branin (6,10) (-5,0) (10,15)
SixHump (1.5,0.8) (-1.9,-1.1) (1.9,1.1)
Rastrigin (2,6) (-5.12,-5.12) (5.12,5.12)
Rosenbrock (-1.2,1) (-2,-2) (2,2)
MexicanHat (0.5,-1.5) (-8,-8) (8,8)

Sphere (4,3) (-5,-5) (5,5)

given for the target function. The number of parents µ is tuned as an integer.
The selection pressure ⌫ as well as the learning parameter for self adaption ⌧ are
tuned as real valued numbers (float). They are varied as listed in Table 4. Each
combination of the two algorithms and the six test functions is one optimization
problem O to be tuned by SPOT andMSPOT, leading to 12 di↵erent problems.

Experimental Setup on Layer 1. The single objective numeric test func-
tions and their relevant settings are summarized in Table 5. Their start point is
chosen with a deterministic value to make sure that less additional noise distorts
the results of the comparison. All start points are manually chosen to have a
su�cient distance from the global optima, and not to have symmetric values.
The implemented set of single criteria test functions is used as described in de-
tail by [1]. In order to detect obvious e↵ects and abnormalities, the well-known
sphere function was added to our set of test functions.

5.2.3 Evaluation

We have chosen three surrogate models M as shown in Table 2, two algorithms
and six test functions, altogether 3 ⇥ 2 ⇥ 6 = 36 configurations are consid-
ered. In order to keep the complexity manageable, we decided for the following
procedure:

1. First, both MSPOT and SPOT are run for each algorithm-surrogate-
problem combination. For example, MSPOT is used with random forest
to tune ES on Rosenbrock’s function.

2. Second, we will determine the best surrogate model, say M⇤, for MSPOT
and SPOT independently.
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3. The final evaluation comprehends 2 ⇥ 6 = 12 comparisons. Mean best
function values and standard deviations of MSPOT and SPOT are com-
pared.

6 Results

6.1 Case Study I. Comparison

Results from runs with limited budgets of function evaluations (100 and 500,
respectively) are presented in Fig. 4. The contrast between these results is
obvious. While the direct approaches SMS-EMOA and NSGA2 clearly out-
perform most of the MSPOT approaches after 500 function evaluations, their
performance in comparison is much worse after only 100 function evaluations.
After 100 function evaluations, almost all MSPOT approaches perform better
than SMS-EMOA and NSGA2 do. This particularly holds for the DTLZ test
functions. On the ZDT functions, the direct approaches perform at least better
than MSPOT incorporating the sFO model. This is probably due to the high
input dimension. Kriging is rarely reported to work well for high dimensions,
i.e., greater than 20. [15] We feature 30.

Both remaining other models sEA and sRF perform better than the direct
approaches on all test functions. Comparing these two, sEA beats sRF on all
test function except for ZDT3. A possible correlation to the discontinuity of the
Pareto front of this test function cannot be neglected, but is not investigated
any further at the moment.

After 500 function evaluations, sEA still is the best MSPOT approach and
it also outperforms SMS-EMOA and NSGA2 for n = 2 (ZDT functions). How-
ever, all other MSPOT based approaches yield worse results. This also holds
for n = 3 (DTLZ functions), except for sEA performing worse than sFO and
sRF here. The better performance of sFO might be due to the lower dimension
of the decision space. Another interesting observation is that NSGA2 performs
bad on DTLZ2, while all other approaches do much better. In particular, the
other direct approach, SMS-EMOA, is the best algorithm on this function.

In Fig. 5 the hypervolume growth of MSPOT with sEA is compared to
SMS-EMOA on DTLZ2. The course of the hypervolume and the correspond-
ing standard deviation for each generation is plotted against the corresponding
number of function evaluations.

The figure shows that MSPOT clearly outperforms the SMS-EMOA in the
beginning, for the first 300 generations approximately. After around 300 func-
tion evaluations SMS-EMOA takes the lead. The exact crossing point varies
for di↵erent settings, however SMS-EMOA always overtakes the MSPOT ap-
proach for the DTLZ functions. This behavior cannot be reported for the first
1000 function evaluations on the two dimensional test cases.
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The left column presents the results with a budget of 100, the right one with
500 function evaluations. Corresponding test functions are in one line.
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6.2 Case Study II: Multi-Criteria SPOT

6.2.1 Results from the Pre-experimental Study

In every experimental setup from our study, sd(Y ) and Y are correlated. We
observed that a parameter setting ~x, which results in a good mean function
value, has a low standard deviation. As shown in Fig. 7, contour plots based
Y and sd(Y ) present similar information. Moreover, the correlation between Y
and sd(Y ) increases for good parameter settings. Figure 6 clearly illustrates this
correlation. Pearson’s product-moment correlation of Y and sd(Y ) is 0.9314042
for Rosenbrock’s function. Similar values were obtained with Rastrigin (cor-
relation: 0.8242029), Branin (0.9024674), SixHump (0.8976964), MexicanHat
(0.9370178), and Sphere (0.9791648).

6.2.2 Results from the Comparison

First, we analyzed which model M performs best for each SPOT variant:
MARS, Kriging, or Random Forest. In both cases, sFo, i.e., Kriging, performs
best. Therefore, it was chosen for the final comparison of the SPOT variants.
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culated for remaining test functions. Results are based on 10,000 ES algorithm
runs. Note that SPOT uses 200 algorithm runs (or even less) to determine good
design points.

Standard SPOT determines a design point, whereas MSPOT generates a
set of (Pareto optimal) design points. Since good design points, i.e., design
points with a low Y value, are expected to have a low associated standard
deviation, the design point with the best Y value was chosen from the Pareto
front for the final comparison with SPOT.

A typical result from these final comparisons is shown in Fig. 8. It also shows
by example how ES performed better than SANN on every test function.
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Figure 7: ES on Rosenbrock’s function. These two figures were generated based
on 10,000 ES algorithm runs to illustrate the correlation between mean Y and
standard deviation sd(Y ) of function values. Contour plots of function values
(left) and standard deviations (right) show a very similar structure. Selection
pressure is plotted against population size. The sliders on top of each panel
shows the variation of the learning rate. NPARENTS: number of parents µ.
NU: selection pressure ⌫. TAU: learning parameter for self adaption ⌧ .

7 Analysis and Interpretation of Results

Analyzing results from the first case study lead to the following conclusion,
which gives an answer to research question 1.

Conclusion 1 On the lowest budget, which we stated earlier as being most
promising for MSPOT, it is shown that SPOT methods outperform NSGA2
or SMS-EMOA on a majority of test functions. ⇤

Regarding the performance ofMSPOT versus SPOT, our experiments show
that MSPOT performs equally good or even slightly better than the standard
approach.

Conclusion 2 Integrating the standard deviation of a solution can be beneficial
for the search process. ⇤

Although conclusion 2 requires further investigation, we are optimistic that
enhanced MSPOT variants might result in a performance boost. However,
MSPOT is not the first approach, which combines function values and standard
deviations. For example, chapter 3 in Forrester et al. [10] presents fundamental
ideas in a very comprehensive manner. Hence, analyzing and improving the
MSPOT approach is of great interest, not only, because it performs slightly
better than the single objective approach. Especially in uncertain real-world
settings, it is desirable to provide a set of trade-o↵ solutions between robustness
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Figure 8: Results on Rosenbrock. Left: function value, right: standard devia-
tion. Upper: MSPOT vs. OCBA-SPOT, both on ES. Lower: ES vs. SANN,
both tuned with MSPOT.
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and optimality to a human decision maker. Here, the decision maker has to
make a choice according to the need of the particular application.

In addition to conclusions related to research questions 1 and 2, we made
interesting observations about the correlation structure of Y and sd(Y ). As illus-
trated in Fig. 6, Y and sd(Y ) are positively correlated if minimization problems
are considered. We can conclude from these observations that parameter de-
signs, which were used during the final stage of an algorithm tuning, have both
low Y and low sd(Y ) values. Further analysis reveals interesting interactions
between solution quality and standard deviation, which gives reason for addi-
tional research. However, based on the actual data from our experiments, we
can state the following conclusion.

Conclusion 3 If the algorithm improves during the optimization, the final Y
values have a small standard deviation. If the optimization of the algorithm
fails, then the standard deviation is relatively high. ⇤

8 Summary and Outlook

A multi-criteria approach to SPO was defined in this paper. It was shown
that MSPOT can be applied successfully to solve hard MCO problems with a
strictly limited budget. Moreover, MSPOT was applied to single objective algo-
rithm tuning, by considering standard deviation of results as a second objective.
Both SPOT and MSPOT were able to find good parameter settings. Results
indicated that there is actually a high correlation between standard deviation
and solution quality, if the solution is in the vicinity of the optimum. It could be
observed however, that MSPOT can find better solutions than single objective
SPOT on this problem type. The proposed MSPOT approach can be improved
in many ways: Several SPOT features can be integrated into MSPOT, e.g., an
adaptation rule for the number of repeats, k, on noisy problems or an optimiza-
tion on the surrogate models. Moreover, the choice of population sizes for this
internal optimization of the surrogates should be made independent of the used
sequential budget a. And last, but not least, MARS can be used with more
sophisticated parameterizations. Finally, a main focus of further research will
be to test MSPOT on real industrial problems like the structural optimization
of dust filtering cyclones. Such applications are the driving force behind this
research.
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