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1 Introduction

Model-based tuning has proven to be a successful method for improving
the performance of computational intelligence methods such as evolution-
ary algorithms or neural networks [1, 2, 3]. However, model-based tuning
itself can be a demanding and time consuming task. One crucial step dur-
ing the tuning process is the selection of an adequate experimental design
as well as the limits of the algorithm parameter space to be explored, the
so-called region of interest (ROI). In the current practice, the ROI is static,
that is, chosen a priori and not changed during the tuning process.

In this paper we will investigate adaptive ROIs. In particular, we introduce
mechanisms for appropriately locating and sizing the ROI on-the-fly. We
will focus on the sizing aspects, because too large ROIs may slow down the
tuning process resulting in worse results. This is due to a large search space
leading to a lack of detail in the most critical regions. The meta model
would not be able to represent these regions adequately. By adapting the
size of the ROI during the tuning process (online) this issue can be dealt
with.

To understand the working principles of adaptive ROIs, we implement spe-
cial moving and zooming operations, where zooming can make the ROI
smaller (zooming in) or larger (zooming out). Furthermore, we distinguish
four algorithm variants, depending on whether the model building and the
sampling steps utilize (or not) the adapted ROI settings, i.e., the zoomed,
local information. Here by we obtain four main variants and our primary
research question is: What is the effect of these policies on the tuning pro-
cess?

Our approach to answer this question is experimental. Our adaptive ROIs
are tested with simple benchmark functions and we analyze the effect of
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the moving and zooming operations on tuner performance. The rest of this
paper is organized as follows. Section 2 describes previous research in
this field. The methods employed in this study are introduced in Sec. 3.
This includes the employed tuning software as well as the ROI adaptation
methodology. A detailed description of the experimental setup is given in
Sec. 4. Afterwards, results are presented in Sec. 5. Finally, Sec. 6 con-
cludes this work and gives a short outlook on promising future directions
of research.

2 Previous Research

Adaptation of optimization bounds is not a totally new idea. It is closely
related to concepts used in adaptive evolution strategies (ES). The most
simple ES, the so called (1+1)-ES, has a step-size parameter which is mul-
tiplied with a preset factor in case of optimization failure, and divided by
that factor in case of success [4]. Similar and more complex adaptations of
step-sizes or mutation-rates can found in most optimization algorithms.

While model-based tuning algorithms such as sequential parameter op-
timization (SPO), see 3.1) do also employ such optimization algorithms
when optimizing the model, they do not necessarily do so on the meta-
level. Here, the step size may be best translated to the region in which the
search is performed.

One similar approach is often employed with linear models, i.e., in the re-
sponse surface methodology (RSM) [5]. Here, it is obvious that restricting
a model to a certain region rather than exploiting knowledge of the whole
search space makes sense. A linear model may not fit a complex func-
tion on its global scale. Also, depending on the specific model, a global
optimization of it would often lead to placing new design points on out-
most border of the search space. Hence, RSM adapts the search space
sequentially. The question whether this does also make sense with other
model-types is one motivation for this work.

A related approach has been introduced and further studied in [6, 7, 8]. The
REVAC method is implicitly changing the ROI by continually adapting a
distribution used to sample the parameter space. It has been shown to be
effective in optimizing already highly developed evolutionary algorithms
[9].



3 Methods

3.1 Sequential Parameter Optimization

The performance of most optimization algorithms is influenced by several
parameters. Choosing those parameters in a meaningful and beneficial way
may be difficult, especially considering that an ideal choice depends on the
specific problem to be solved by the optimizer. The meta optimization of
an algorithms parameters is often referred to as tuning. Tuning yields not
only improved algorithms, but also allows for a fair comparison between
competing algorithms.

One framework developed for parameter tuning is SPO [10] . It has been
applied to numerous applications [11]. In its core, it is uses methods such
as design of experiments (DoE), statistics, and machine learning.

A typical SPO run begins with the generation of an initial design. That
is, several configurations of different parameter values are generated, e.g.,
with methods like Latin Hypercube Sampling. The design is generated in
an predefined area of the search space, as defined by the ROI. The initial
design is then evaluated with the tuned optimization algorithm to determine
the quality of the chosen parameter values. With the gained knowledge
about each configurations quality, a surrogate model is learned, which is
supposed to represent how the parameters influence the quality.

Next, this surrogate model itself is subject to an optimization process. The
best parameter configuration (according to the model) is determined. This
again takes place in the ROI, and may be based on any algorithm includ-
ing classical optimization algorithms, evolutionary algorithms or sampling
methods (DoE). The optimal solution found may then be evaluated with
the tuned algorithm. These steps of model building, model optimization,
and algorithm evaluation are repeated in a sequential manner until some
specified stopping criterion (e.g., number of steps, number of evaluations)
is reached.

3.2 Adaptive ROI

The ROI defines lower and upper limits in each search space dimension and
is usually set by an experienced user with more or less good knowledge or
at least ideas of the interesting regions of the fitness landscape. These ROI
limits are hard limits. The adaptation is performed in each sequential step.
In case of the first iteration, it takes place directly after the evaluation of the



initial points, which are given by either a Latin hypercube sampling or a
random uniform distributed sample. In the sequential iterations, adaptation
takes place directly after evaluating the most recent candidate solution on
the target function.

The adaptation can be controlled by two parameters. The first parame-
ter (MOVE) controls whether the ROI is moved towards good candidate
points or not. The second parameter (z) controls the zooming factor of the
ROI. The ROI expansion will not go beyond the user defined ROI limits.
Both operations, move (if enabled) and zooming are performed in each
step. That means, the ROI will be adapted in each iteration by moving,
extending, or shrinking the former ROI range. The range is hereby calcu-
lated as the distance between the upper an lower limit or the ROI. There
are two cases in which different actions are performed by the adaptation
(algorithm 1):

1. Improvement. If the new best point leads to an improvement, which
means it is not equal to the last found point, and the move operation
is enabled, than the center of the ROI is moved to this new point
in the next iteration. Also, depending on factor z, the ROI is either
shrinked (z > 1) or extended (z < 1). The first adaptation will be
referred to as zooming in, whereas the latter is referred to as zooming
out.

2. Stagnation. The center is not moved and the ROI range is either
shrunk (z < 1) or extended (z > 1)

This procedure relies on the assumption that optima are situated in the
neighborhood of good solutions. For z values larger than 1.0, the search
is localized by shrinking the ROI if an improvement is achieved. And, if
no improvement is made, the ROI is extended to be able to escape local
optima.

The case of z smaller than 1.0 may yield a more localized, exploitative
search in case of stagnation. This could help to focus more on the imme-
diate neighborhood of the best solution. In contrast to the above case, one
would not try to escape the local optimum, but rather to improve the best
solution found so far in a more local sense. At the same time, improve-
ment may yield a larger ROI, hence progress may be sped up by allowing
an even larger step in the next SPO iteration.

Which strategy is better is supposed to be determined in the experiments.



Algorithm 1 Adaptation by Moving and Zooming
if newCandidatePoint < bestF itness then

w ← 1/z . Zooming(-in) ROI
else

w ← z . Zooming(-out) ROI
end if
l← b− a . Compute length of ROI
if MOVE then

p← newCandidatePoint . Move to new best x position
else

p← a+ l/2
end if
a← p− w × l/2
b← p+ w × l/2
if then((b− a) < 1e− 20) . If necessary reset ROI

a← a0
b← b0

end if

The above notions describe in detail when and how the adaptation is per-
formed. One additional open question is how an adapted ROI should be
used. That is, it is unclear whether the ROI should affect the boundaries of
the search on the surrogate model, the selection of points for training the
surrogate model, or even both.

4 Experimental Setup

4.1 Designed Experiments

Adaptation and moving is closely related to locality. A series of experi-
ments was performed to answer the question how local or global model
building affect the performance. Prediction of new points based on meta
models is done in two steps: first, a (sub)set of points is chosen for the
model building. Then, a second set of points has to be selected for the
predictions. The correct method is of crucial importance for the search
process. Therefore, four possible combinations of building and prediction
are included in the design. The corresponding design parameters are ex-
plained in Sect. 4.3.



4.2 Objective Functions

The function f1 is used to demonstrate positive aroi effects.

f1(x) =

{
1 x < −1
x2 otherwise. (1)

The function f2, also known as the wild function, is defined as follows.

f2(x) = 10 sin(0.3x) sin(1.3x2) + 10−5x4 + 0.2x+ 80. (2)

The minimum is located at xopt = −15.81515 with f2(xopt) = 67.46773.

Rastrigin’s function, which is defined as

f3(x) = 10 + x2 − 10 cos(2πx) (3)

was chosen as the third test function. The minimum is located at xopt = 0
with f3(xopt) = 0.

All three functions are visualized in Fig. 1.
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Figure 1: Visualization of the three objective functions.

4.3 Design

The initial design size, n, describes the number of initial sample points,
which are evaluated to build the first meta model. Initial design sizes of
five and ten were chosen for our experiments.

Regarding the meta modeling, there are four case to be considered.

Mdl-1 (global,global): meta model built on global data, predictions sam-
pled in the region of the global data, i.e., a(t) = a0 and b(t) = b0
in every time step. Both zooming, z, and moving, MOV E, have
no effect in this case.



Mdl-2 (global, local): meta model built on global data, predictions sam-
pled in the region of the local data. Here, the samples are taken
from the adapted ROI settings a(t) and b(t). The model is build
with all evaluated design points at time step t.

Mdl-3 (local, global): meta model built on local data, predictions sampled
in the region of the global data. Here, the model building is based
on the x design points, which belong to the current ROI, i.e., x(t) ∈
[a(t), b(t)].

Mdl-4 (local, local): meta model built on local data, predictions sampled
in the region of the local data. Here, the model building is based on
the x design points, which belong to the current ROI, i.e., x(t) ∈
[a(t), b(t)]. The samples are taken from the adapted ROI settings
a(t) and b(t).

The number of repeats, i.e., the number of algorithm runs with unmodified
parameter settings but different random seeds, is denoted as nRepeats.

4.4 Algorithm Parameter

Parameters of Algorithm 1 were chosen as follows: Number of points eval-
uated on the meta modelm = 1000. To generate points on the meta model,
the function maximinLHS() was used.

Experimental setups used in this study are shown in Tab. 1.

Table 1: Experimental Setup

exp1 exprg05 rast01 exprg07 exprg08 exprg09 exprg10
nRepeats 5 50 10 100 100 100 100
zSeq zSeq1 zSeq1 zSeq1 zSeq2 zSeq3 zSeq2 zSeq2
n (5,10) (5,10) (5,10) 5 5 5 5
MOVE (T,F) (T,F) (T,F) (T,F) (T,F) (T,F) (T,F)
iter 10 10 10 10 10 10 10
roiMDL Mdl1-4 Mdl1-4 Mdl1-4 Mdl1-4 Mdl1-4
a0 -10 aSeq -10 -1 -10 -20 -5.12
b0 10 10 10 10 1 10 15.12
fNum 01 03 01 01 02 03

Settings for the zoom parameter z are chosen from the set zSeq1 = { 0.1,
0.9, 1,1.1, 2.0}, zSeq2 = { 0.1, 0.2, . . . ,1.9, 2.0}, zSeq3 = c(0.1, 0.2, . . . ,
4.9, 5.0). aSeq = { -10, -9, . . . , 0, 1}. The sample size is set to m =1000
and a LHD was chosen for each setting. Moving was controlled by the



parameter M with values from {true, false}. The parameter iter denotes
the number of function evaluations after the initial design was evaluated.
The total number of function evaluations per run can be determined as
n+ iter.

5 Results

5.1 Effect of Moving and Shrinking

The first experiments are labeled exp1, rast01, and wild01. The initial ROI
a = −10, b = 10 leads to the result shown in Fig 2. At the first sight,
shrinking in case of stagnation leads to better results: the smallest function
values were obtained with z = 0.1. Furthermore, moving of the ROI center
point worsens the performance.

Note, this effect can be explained as follows. This set of experiments uses
ROIs, which are symmetric to the center, the location of the optimum. Sim-
ply shrinking the interval, regardless of further considerations, obviously
improves the function value. Since the ROI initially set by the user can
not be exceeded, extending the ROI can never get past this bound. On the
other hand, any shrinking of the ROI will naturally lead to improved op-
timization performance. In the most extreme case, the ROI would simply
collapse to the location of the optimum itself, with a0 = b0 = xopt.
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Figure 2: Function values (log.) plotted against z ∗M . Smaller values are
better. Left: Results from exp1. Leftmost configuration uses M=FALSE,
z=0.1. White = no move, gray = move. Right: Results from rast01.



To avoid this unwanted side-effect, i.e., optimization is driven by an ade-
quate shrinking procedure and not by the optimization algorithms, a series
of experiments were designed, which prevent this behavior. These exper-
iments use asymmetric ROIs, so by simply shrinking the search interval,
optimal values cannot be detected.

5.2 Asymmetric Search Interval and Locality in the Meta Model

Interesting effects occur if ROI symmetry is disturbed. In addition to
the variations of the ROI locations, experiments which analyze the im-
pact of the adaptation on the meta modeling (as described in Sect. 4.3) are
performed. Since four meta modeling variants (roiGlobal) were imple-
mented, their comparison might be of interest. The obtained results of the
log(y) value are plotted as a function of the shrinking parameter z and the
roiGlobal factor. As can be seen in Fig. 3, local model result in perfor-
mance improvements when moving is enabled.
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Figure 3: Function values plotted against z for the different modeling ap-
proaches; Results from exprg07. Left: without moving, a narrow valley
can be seen around z = 1. Right: with moving, the ll and gl settings
perform best.

Without Moving (left), the gg setting displays for most of the chosen set-
tings for z an dominating behavior, but in the center a slightly better per-
formance is achieved by the ll and gl model. Furthermore, as the best
performance is obtained for values close to z = 1, zooming seems to have
a negative effect. With moving (right) the local meta modeling performs



best, while zooming seems to have no significant effect. This behavior can
be explained by a closer look at the function and the algorithm. Due to
the asymmetric ROI (-1,10), the optimum is situated at the very left. If the
center point cannot be moved, shrinking leads to an exclusion of the opti-
mum. With moving, the center point of the ROI is moved to the left and the
range becomes smaller because it is calculated as the difference between
the upper and the here lower hard- limit of the ROI. Thus, even without
zooming, the adapted ROI is shrinked and a localized search is performed
in the region of the optimum.

0.5 1.0 1.5 2.0

69
.5

70
.0

70
.5

71
.0

71
.5

z

y

gg
gl
lg
ll

0.5 1.0 1.5 2.0

69
.5

70
.0

70
.5

71
.0

71
.5

z

y

gg
gl
lg
ll

Figure 4: Function values plotted against z for the different modeling ap-
proaches for exprg09, the wild function. Left: without moving, the gl and
ll models show a performance increase for small z values. Right: with
moving, all modeling approaches perform better than gg where no moving
or zooming is applied.

Results from exprg09 show similar results, with the difference of the per-
formance without moving, as shown in Fig. 4 (left). The herein optimized
wild function has many local optima. Hence, small values of z, where
shrinking is applied if no better solution is found, seems to be beneficial
for the local prediction modeling approaches gl and ll, but not with local
meta modeling. This can be explained by understanding how the modeling
is applied. A strongly localized meta model is, due to the small sample
sizes, not able to model the overall behavior of the wild function. At the
same time, a localized prediction on a global model leads to a good search
direction.

Fig. 5 displays results from expgr08 (left) and expgr10 (right), both with
moving. Exprg10 shows a performance similar to expgr07. For expgr08,



the z range was extended to see the behavior for large z values. Exprg08
has a difficult large plateau on the left side, where optimization algorithms
usually fail to improve ( and perform similar to a random search). Without
moving (not shown) no benefit can be achieved with local modeling ap-
proaches. With moving, the optimum is often found for z values between
2 and 4, which imply a large shrinking if a good solution is found, together
with local prediction models.
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Figure 5: Function values plotted against z for the different modeling ap-
proaches. Left: Results from exprg08 with extended range of z, with mov-
ing. Right: Results from exprg10, with moving.

6 Conclusion

Regarding our main research question, how moving and zooming with
different local model building affect the performance, the following in-
sights were obtained:

• With moving and zooming a performance increase can be obtained

• The correct setting of the parameter z is important

• The four different model training/exploration approaches strongly
affect the performance of the algorithm, depending on the underlying
problem.



Our results have shown, that for each of our test problems there is at least
one model building variant which outperforms the default without zoom-
ing or moving. The variant with lg with local meta modeling and a global
prediction modeling with active moving seems to have the best general-
ization ability, as the performance is at least steady or improved on all test
problems. For some problems, we could observe some interesting artifacts,
which also might point in the direction of further improvement for our al-
gorithm: if the ROI is centered around the optimum, zooming in without
moving has a significant positive effect. We anticipated this, but it shows
that the general idea is working and there is a potential for significant im-
provement. An also interesting effect takes place on the more complex
wild function, where a localized search in case of no improvement of the
found solution can lead to a significant boost in performance. So we still
need to have a good problem knowledge for choosing the correct setting of
z and the best model.

This study provides some interesting leads for future work on the topic of
adaptive ROIs. We need to revise the moving and shrinking algorithm and
try to find an adaptive solution for choosing z and the correct model build-
ing. The adaptive process is intended to improve the performance without
interaction of the user. Further experiments should be able to give us more
insight. We particularly need to perform experiments on higher dimen-
sional cases as most tuning problems consist of a large set of parameters.
Further, in future the algorithm shall be able to exceed the user predefined
limits (to a still user-set absolute hard limit) so it is possible to enlarge the
search space while keeping a initial local approach.
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