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1 Introduction

Sequential parameter optimization (SPO)[1] is a state-of-the-art tuning methodology for
optimization algorithms. It has the following properties:

i) Use the available budget (e.g., simulator runs, number of function evaluations) se-
quentially, i.e., use information from search-space exploration to guide the search
by building one or several meta models, e.g., random forest, linear regression, or
Kriging. Choose new design points based on predictions from the meta model(s).
Refine the meta model(s) stepwise to improve knowledge about the search space.

ii) Try to cope with noise by improving confidence. Guarantee comparable confidence
for search points.

iii) Collect and report tuning process information for exploratory data analysis.
iv) Provide mechanisms both for interactive and automated tuning.

The SPO Toolbox (SPOT) provides standardized interfaces, which enable the integration
of several meta models in a convenient manner [2]. Naturally, the question arises, which
meta model should be used during the tuning process. Instead of recommending one meta
model only, we will analyze an alternative approach: Provide an effective and efficient
policy to dynamically combine several meta models to one better, i.e., more reliable meta
model. Two research questions are dealt with in this study:

(Q.1) How to dynamically select the best meta model amongst an ensemble of meta mo-
dels?

(Q.2) Based on evaluations of several models and its related predictions and errors (un-
certainties), how can the best combination be determined?

These two questions are classical exploration—exploitation problems, which has been
discussed in the literature for several decades and in different settings (scheduling, design
of clinical trials, search).

To tackle these two questions, this experimental study analyses the behavior of two ap-
proaches in the SPO framework, namely (i) single evaluation approaches, i.e., one mo-
del is build in each step, and (ii) multiple evaluation approaches, i.e., several models are
build in parallel. The assumption, that model building is computationally cheap compared
to real function evaluations, justifies the evaluation of several models in parallel. Combi-
ning elements from sets of test functions, meta models, and decision rules increases the
combinatorial complexity. To discover first trends, we use a very limited set of five test
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Table 1: Fourteen different ensemble approaches used in this study

Name Type Abbreviation

Round Robin single sRR
Randomized Choosing single sRC
Greedy single sG
✏-Greedy ✏ = 0.25 single sEG
SoftMax single sSM
Bayesian Learning Automaton single sBL

Greedy multi mG
✏-Greedy multi mEG
Ranking multi mR
Weighted Ranking multi mWR
Quality Driven Grading multi mQG
Weighted Averaging multi mWA
Weighted Averaging Squared multi mWAs
Alternating Recommendation multi mAR

functions (Branin, Mexican Hat, Rastrigin, Rosenbrock, and Six Hump), which will be
extended in further studies. Meta models are based on three variants of Gaussian process
models (Kriging), random forest, and support vector machines. Fourteen different ensem-
ble based approaches are considered in this study. Design of experiments and analysis of
variance tools were used to perform a statistical analysis.

In the following section the ensemble approaches, that we used in this study, are descri-
bed. Section 3 explains the experimental setup, including a short presentation of the meta
models that are used as a foundation for the ensembles. Also a detailed description of the
objective functions used for this study is given. Section 4 presents results derived from the
experiments, which are then statistically analyzed in section 5 and discussed in section 6.
Finally section 7 provides an outlook on future work. Note, results from our research are
not restricted to tuning problems, they are also of great relevance in different domains
(e.g., active learning and bagging).

2 Ensemble Approaches (Policies)

A comprehensive introduction to ensemble-based approaches in decision making is given
in [3]. In this section we distinguish between two groups of ensemble approaches: The
first group’s approaches only choose and build one single meta model in a single SPO
step. The second group’s approaches build all models, and use the derived information to
decide which output to use. The policies from this study are summarized in table 1

2.1 Single Evaluation Approaches

The approaches described as Single Evaluation are based on methods used to solve multi-
armed bandit problems [4]. Multi-armed bandit problems are a well known area of rese-
arch. They are decision problems where a player has to decide, which bandit to play to
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maximize his reward. This can be mapped to the application of SPO, where a bandit re-
presents a meta model and the SPO algorithm has to decide which meta model to choose
in each sequential step.

Thus single evaluation approaches only build and evaluate one model in each step. The
choice in the subsequent step is then based on a success/failure quality criterion (Bernoulli
distributed feedback), unless the choice is completely random or predefined like in the
Round Robin or Random Choice approaches. Success means that SPOT found a new and
better function value with the help of the chosen model, failure indicates that no progress
was made.

Some of the algorithms mentioned below are for stationary problems, some also work
for non stationary problems. It is likely that our application is not perfectly stationary,
since the number of data points available for model building rises throughout a SPOT run.
Some models might excel in the beginning, others at the end of the run. However since the
number of steps (or decisions) done in each run is rather low, this non-stationarity might
be hard to grasp. Therefor we consider approaches of both types in here.

2.1.1 Round Robin

The meta models used in this ensemble approach are chosen in a circular order indepen-
dent of their previously achieved gain, starting with the first model in the list of models.

2.1.2 Randomized Choosing

As another baseline comparison Random Choice is used, where the meta model to be used
in each step is selected randomly from the list of available models. Again the previous
success of the model is not a factor.

2.1.3 ✏-Greedy

A greedy decision, is a decision that chooses exploitation over exploration. So in each step
the greedy decsion would be to choose a meta model that provided the most reward so far.
The ✏-Greedy algorithm chooses the best model with P = ✏ and with a probability of P =

1 � ✏ one of the remaining models is chosen. In this way the ✏ parameter can be used to
balance between exploitation and exploration. The exact choice of this parameter however
is hard to recommend, and also the less greedy choices are treated all the same, even
though they might have varying success. Still the ✏-Greedy can prove to be surprisingly
good when compared to other algorithms [5].

In our study we use two settings for epsilon, ✏ = 1 and ✏ = 0.75. Thus we compare
a rather greedy version with a completely greedy version. We refer to the completely
greedy version simply as Greedy, and the other as ✏-Greedy.



2.1.4 SoftMax

The SoftMax strategy uses a probability vector where each element represents the proba-
bility for a corresponding meta model to be chosen. The probability vector is updated by
using a boltzman distribution, depending on the reward received for the chosen models.

p(i) = eQ(i)/⌧
PK

k=1 e
Q(k)/⌧

Parameter ⌧ defines how much influence a difference in rewards has on the probability
vector. K is the number of meta models, p(i) is the probability for model mi to be chosen
and Q(i) is weighted average reward for each model. The weighted average reward is
computed by using a parameter ↵ 2 [0, 1] that defines how fast the algorithm forgets,
thereby managing to deal with non-stationary problems:

Qt+1(i) = Qt(i) + ↵[rt+1(i)�Qt(i)]

Everytime a model is chosen and its success is evaluated, Q(i) is updated with the above
formula. The reward rt+1 is zero if no progress was made with the model, or one if it was
successful.

The temperature parameter ⌧ and the recency weighting parameter ↵ have to be chosen
initially.

The softmax algorithm and the weighted averaging for nonstationary problems are des-
cribed by Sutton and Barto in [6].

2.1.5 Bayesian Learning Automaton

As proposed by Granmo [7], Bayesian learning automatons can be used to solve bandit
problems which have Bernoulli distributed feedback. Granmo described an algorithm for
a two-armed bandit, which can easily be expanded to a multi-armed bandit.

For each bandit (e.g. meta model in our case) the two integer values ↵ and � (both in-
itialized with 1) are tracked. In case of a reward, the models mi associated ↵i value is
incremented, else �i is incremented. When deciding which model is to be used in the
current step, a random value is sampled from the beta distribution for each model, using
↵i and �i as shaping parameters of the distribution. The model with the highest sampled
value is chosen.

In contrast to epsilon greedy and SoftMax algorithm, this approach has the advantage of
not needing any parameters to be set.

2.2 Multiple Evaluation Approaches

The algorithms described in this section evaluate all meta models in each sequential step.
The response of the ensemble meta model is than built dependent on the answer of the
meta models, considering i.e. the error each model has made or its uncertainty.



2.2.1 Greedy

In this case the Greedy approach is slightly differently defined. For the single evaluation
approaches, the greedy choice was to build and evaluate the most successful model. Here
however all models are built, and the greedy decision is simply to choose the response of
the model with the smallest error measure.
That means, in each sequential step the response of that meta model is chosen, which has
the smallest mean squared prediction error on its prediction for the previous sequential
step. This error is calculated as the mean of the squared differences between the predicted
and actual function values.
Since there is no previous prediction done in the first sequential step, the calculated error
is null for each meta model. In this initial step the meta model is chosen randomly.

2.2.2 ✏-Greedy

Again the ✏-Greedy approach simply differs from the Greedy approach in one point: that
the greedy decision is not always made. With a probability P = 1 � ✏, a meta models
response is chosen randomly, independent of its previous prediction error. With a proba-
bility of P = ✏ the meta model will be chosen greedy.

2.2.3 Ranking

This approach tries to combine the response of meta models to one response, that all meta
models contributed to, rather than to choose one response. In order to do this all meta
models are evaluated and their responses are ranked. The overall response is then built as
the sum of the exponentiated ranks. The following formula describes how the different
meta models are combined to one response:

ˆY =

X
exp (rank (ŷi)) .

Here ŷi denotes the prediction of the meta models, whereas ˆY denotes the combined re-
sponse. The rankings of the single responses ŷi are exponentiated to provide a combined
ranking which prefers configurations that are evenly ranked by all meta models, and pu-
nishes configurations that are rated unbalanced.

2.2.4 Weighted Ranking

This approach differs from the previously named in that point, that here the ranks that are
used to build the sum for the overall response are weighted. To determine an appropriate
weight, the models mean squared prediction error of the last sequential step is scaled and
used as a weight.

ˆY =

X
exp (rank (ŷi) /weight)



2.2.5 Quality Driven Grading

In this approach all meta models are fitted n + 1 times. Once on the complete data set
and n times on reduced subsamples of the original data set. This procedure provides a
clue towards the meta model’s response underlying certainty. This knowledge about the
Meta models uncertainty and the error it has made in previous predictions is then used to
weight the models prediction on the actual data set. Thereupon the meta model with the
best weighted response is chosen.

2.2.6 Weighted Averaging

The Weighted Averaging approach does not choose a specific models result but rather
combines it by averaging. Since bad models should not deteriorate the overall result, we
simply introduced a weighting scheme. Every models result for a single design point is
weighted by its overall error, the sum over all models yields the final value assigned to the
design point. Additionally we tested a setting were the error weight was squared to punish
bad models harsher. Of course the result of the weighted averaging is not to be considered
in the same scaling as the original data. But since SPO is here only used as an optimizer,
this does not pose a problem.

The error measure used for this (and the next approach) is defined as the mean absolute
error of the model built in the last step, over all points that have been evaluated on the
objective function.

2.2.7 Alternating Recommendation

The concept of SPO allows in every sequential step not only one new suggestion of a de-
sign point to be evaluated on the target function, but multiple ones. So instead of chosing
a model and using all results from that single model, the Alternating Recommendation
ensemble considers all models build. In contrast to the averaging approach, each model
stays untouched.

Ordered by the models error (computed as in the above approach), each model in turn
can propose a new design point. The most accurate model recommends the first point
(the one it prefers the most), the second best the second one, and so on. If each model
recommended a point, the next round starts, where the "best" model can suggest its the
second best point (if that point was not yet recommended by another model).

3 Experimental Setup

3.1 Meta Models Used During SPOT Runs

SPOT processes data sequentially, i.e., starting from a small initial design, further design
points are generated using a meta model. Many meta models are available in R. Similar as
for the design generators the user has the option of choosing between state-of-the-art meta
models for tuning his algorithm or writing his own meta model and use it as a plugin for



Table 2: Six SPOT meta models used in this study

Type (R function) Name of the SPOT plugin Abbreviation

Gaussian processes (mlegp) spotPredictMlegp ML
Kriging surface estimate (Krig) spotPredictKrig KR
Gaussian processes (gausspr) spotPredictGausspr GP
Random forest (randomForest) spotPredictRandomForest RF
Support Vector Machine (ksvm) spotPredictKsvm KS

SPOT. The default SPOT installation contains several meta models. Table 2 summarizes
meta models used for experiments described in this document. For the experiment those
models were both tested individually, as well as in ensemble combinations.

3.1.1 Random Forest-based Parameter Tuning

The Random Forest method from the R package randomForest implements Breiman’s
algorithm, which is based on Breiman and Cutler’s original Fortran code, for classifica-
tion and regression [8]. It is implemented as a SPOT plugin, which can be selected via
setting the command seq.predictionModel.func according to Table 2 in SPOT’s
configuration file.

3.1.2 Maximum Likelihood Estimates of Gaussian Processes

SPOT provides a plugin for the Maximum Likelihood Estimation of Gaussian process
(mlegp) package which is available in R. The package mlegp finds maximum like-
lihood estimates of Gaussian processes for univariate and multi-dimensional responses,
for Gaussian processes with product exponential correlation structures; constant or linear
regression mean functions; no nugget term, constant nugget terms, or a nugget matrix that
can be specified up to a multiplicative constant [9].

mlegp is implemented as a SPOT plugin, which can again be selected via setting seq.pre-
dictionModel.func according to Table 2 in SPOT’s configuration file.

3.1.3 Support Vector Machines

For this study we added a plugin to SPOT that provides us with a Support Vector Machi-
ne implementation for regression in R. It provides an interface to the ksvm function as
provided with the package kernlab [10], which is based on an algorithm for solving
the SVM QP problem by John Platt [11]. For our experiments, the function ksvm() was
used with default parameters.

3.1.4 Kriging surface estimate

Another plugin was added to SPOT that integrates the Krig method of the fields
Package [12]. This method fits a surface to irregularly spaced data. The Kriging model



assumes that the unknown function is a realization of a Gaussian random spatial proces-
ses. For our experiments, the Krig() function was used with default parameters.

3.1.5 gausspr (kernlab)

The third meta model from the gaussian processes family in this study uses the gausspr
function. This function is also part of the kernlab [10] package. The gausspr()
function is called with default parameters as well.

3.2 Test Functions

Our main goal when choosing the test functions was to obtain a preferably small number
of these, which cover a variety of different difficulty criteria. The following criteria were
chosen beforehand:

1. The function’s optimum does not lie at the origin.
2. The function is not symmetric.
3. The function is multi-modal.
4. The function has many local minima.

In addition, the functions should be well known in the optimization community to improve
reproducibility and comparability of results.

The chosen test functions cover the different difficulty criteria. To gain some additio-
nal difficulty and stay consistent with SPOT’s original area of application, we added
fitness-proportional noise to all test functions. This is the most common case for real-
world settings: values and variability both change together. We restricted ourselves to the
two-dimensional instances of the test functions as the higher dimensional instances re-
quire a much higher budget of target function evaluations and thus a modified setup. The
number of function evaluations was chosen as the termination criterion.

The list of chosen test functions is:

1. Branin function was chosen as a test function, because it is multimodal and not
symmetric.

2. Six Hump function was chosen as a test function, because it is multimodal with
many local minima. It is also not rotationally, but point symmetric around the origin.

3. Rosenbrock Function was chosen as a test function, because it is unimodal; The
global minimum lies inside a long, narrow, parabolic shaped, slowly descending
valley, what makes it even harder to find. The function is not rotationally but axially
symmetric.

4. Rastrigin function was chosen as a test function, because it has a large number of
local minima and only one global minimum. The function is not rotationally but
axially symmetric.

5. Mexican Hat function was chosen as a test function, because it is multimodal with
many local minima.

For more detailed information about the test functions used here (e.g. region of interest,
formulas, optimal values) we refer to [13].



Table 3: SPOT Setup

SPOT Setup Parameter Value

auto.loop.nevals 100
init.design.size 10
init.design.repeats 2
init.design.func "spotCreateDesignLhd"
init.design.retries 100
spot.ocba TRUE
seq.ocba.budget 3
seq.design.size 200
seq.design.oldBest.size 3
seq.design.new.size 4
seq.design.func "spotCreateDesignLhd"

3.3 SPOT in a Nutshell

SPOT uses the available budget (e.g., simulator runs, number of function evaluations)
sequentially, i.e., it uses information from the exploration of the search space to guide the
search by building one or several meta models. Predictions from meta models are used to
select new design points. Meta models are refined to improve knowledge about the search
space. SPOT provides tools to cope with noise, which typically occurs when real world
applications, e.g., stochastic simulations, are run. It guarantees comparable confidence
for search points. Users can collect information to learn from this optimization process,
e.g., by applying exploratory data analysis (EDA) [14, 15]. Last, but not least, SPOT
provides mechanisms both for interactive and automated tuning [16, 17]. An R version of
this toolbox for interactive and automatic optimization of algorithms can be downloaded
from CRAN.1 Programs and files from this study can be requested from the author.

Table 3 shows the settings used for SPOT. As the function is noisy, OCBA (Optimal
Computational Budget Allocation) is used since it has shown superior results in previous
studies [13]. For the test functions are only two dimensional the auto.loop.nevals
parameter, which limits the number of function evaluations, is set to 100. Other settings
are chosen due to experience of the authors.

3.4 Best Case Comparison

To get an impression of how good our models and ensemble approaches could possibly
get, we introduce a Best Case to our experiments. There we do not use any kind of meta
models, but instead use the noise target function itself as a meta model. In a way one
could say we assume that this would be the "perfect" meta model because it completely
represents the real target function (allthough a quadratic or linear meta model that directly
points to the global optimum might rather be perfect in a optimization context).

Doing so we see how good our meta models (or ensembles) could possibly get if they
actually were able to reproduce the target function, under the circumstances that our ex-

1http://cran.r-project.org/web/packages/SPOT/index.html



perimental setting presents. This is simply a comparison to better evaluate the results of
the approaches we test. In plots and tables we will refer to this testing comparison as TST.

4 Experimental Results

We are comparing 18 algorithms (14 ensembles variants and 5 meta models) on five noisy
test functions. A typical question at this point is "Which comparison method should be
used?"

The first step of our analysis relies on EDA. EDA comprehends methods such as plot-
ting the raw data, e.g., histograms, plotting simple statistics such as mean plots, standard
deviation plots, box plots, and main effects plots of the raw data. Observations based on
EDA help us to select adequate techniques for the statistical analysis that will be perfor-
med in the second step. Step two is described in Section 5.

To visualize our results we show two boxplots in Fig. 1. Both show the resulting data,
scaled to an interval of values from zero to one, since the real range of values for each
test function can be quite different. The first plot shows results for all experiments over all
test functions. This demonstrates that while one could make out some small differences,
the overall data set hardly allows to make any good conclusion about which algorithm
performs best. It can however be said that ML seems to be the best of the single models.
The second plot, illustrating results from Rosenbrock’s function only, shows how the
resulting data vary more strongly if viewed only on that single test functions. In this
case ML also seems to perform best on this single test function, while this can not be
verified with every other test function. Especially the results from Rastrigin show very
little differences between the algorithms. Besides that it can be seen in both plots, that
while ML seems to be reasonably good, there is still room for improvement, as the "best
case comparison", i.e., TST, is the single experiment that always provides the best results.

5 Analysis

Our analysis comprehends statistical tools such as analysis of variance (ANOVA). First,
we have to decide whether we want to compare results with a reference algorithm. This
procedure is adequate if one well established algorithm is the gold standard. Given n
algorithms, this techniques requires n� 1 comparisons only. Otherwise, pairwise compa-
risons can be used. Note, the combinatorial complexity of pairwise comparisons is large.
A standard approach from statistics reads as follows [13].

(S.1) Use classical analysis of variance to determine whether there are differences bet-
ween the treatment means. Under normality assumptions, use ANOVA for perfor-
ming one-way location analysis. Otherwise, Kruskal-Wallis Rank Sum Test or its
equivalent for two groups, the Wilcoxon rank sum test can be used. [18].

(S.2) Next, if the answer from the first step is positive, analyze which means differ using
multiple comparison methods. Under normality assumptions, Tukey’s Honest Signi-
ficant Differences (TukeyHSD) tests can be used. Otherwise, the Dunnett-Tukey-
Kramer Pairwise Multiple Comparison tests is recommended. [19]
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Figure 1: First boxplot shows summary of all normalized data over all functions, second plot
shows data from Rosenbrock only. 1=GP, 2=KR, 3=KS, 4=ML, 5=RF, 6=TST, 7=mAR, 8=mEG,
9=mG, 10=mQG, 11=mR, 12=mWA, 13=mWAs, 14=mWR, 15=sBL, 16=sEG, 17=sG, 18=sRC,
19=sRR, 20=sSM



To handle the experimental complexity, our analysis is based on a multi-stage approach
("divide-and-conquer"). We partition the set of policies into three groups: single-evaluation,
multiple-evaluation, and non-ensemble approaches. During the first stage, policies within
each group are compared. During the second stage, the three best policies from each group
are compared.

5.1 Single-Evaluation Approaches

A Kruskal-Wallis rank sum test of the null that the location parameters of the distribu-
tion of Y are the same in each group (sample) is performed first for each test function.
Kruskal-Wallis rank sum test reveals that there is a significant difference for Branin (p-
value = 0.06555) and MexicanHat (p-value = 0.0822), whereas differences for the Rastri-
gin, Rosenbrock, and Six Hump are not statistically significant:

diff lwr upr p adj
sEG-sBL -0.04311923 -0.356219595 0.2699811 0.9987499
sG-sBL -0.01101152 -0.324111883 0.3020888 0.9999985
sRC-sBL 0.08920151 -0.223898853 0.4023019 0.9642148
sRR-sBL 0.03498914 -0.278111229 0.3480895 0.9995469
sSM-sBL 0.31006374 -0.003036621 0.6231641 0.0539600*
sG-sEG 0.03210771 -0.280992652 0.3452081 0.9997025
sRC-sEG 0.13232074 -0.180779622 0.4454211 0.8306643
sRR-sEG 0.07810837 -0.234991999 0.3912087 0.9799607
sSM-sEG 0.35318297 0.040082610 0.6662833 0.0168528*
sRC-sG 0.10021303 -0.212887334 0.4133134 0.9416678
sRR-sG 0.04600065 -0.267099711 0.3591010 0.9982932
sSM-sG 0.32107526 0.007974897 0.6341756 0.0407568*
sRR-sRC -0.05421238 -0.367312742 0.2588880 0.9962660
sSM-sRC 0.22086223 -0.092238133 0.5339626 0.3314643
sSM-sRR 0.27507461 -0.038025756 0.5881750 0.1215595

These results can be interpreted as follows: sSM-sBL, sSM-sEG, and sSM-sG differ in
performance on Branin’s function. To give an example, consider the ninth line from the
output, which compares sSM and sEG:

sSM-sEG 0.35318297 0.040082610 0.6662833 0.0168528*

Since we are considering minimization problems, the positive value 0.35318297 indicates
that sSm reached a higher function value than sEG. 95% confidence intervals and p-values
are also calculated. Summarizing, we can state that sEG is best, sSM worst on Branin’s
function. Taking p-values and confidence intervals into consideration, we can easily detect
significant differences. For example, the difference �0.04311923 from the first line (sEG-
sBL) is not statistically significant.

A similar analysis, performed on results from the Mexican Hat function, reveals that sRC
is worst, sRR best on Mexican Hat, and sEG performs reasonable good. Therefore, the
✏-greedy policy sEG is chosen as the best single evaluation approach.



5.2 Multiple-Evaluation Approaches

Kruskal-Wallis rank sum tests for the multiple-evaluation approaches indicate that these
policies differ in their performance on Branin (p-value = 0.0006006) and Rosenbrock (p-
value = 0.003778). They show similar performances on Rastrigin, Mexican Hat, and Six
Hump.

The statistical analysis reveals that mWR is outperformed by mAR, mEG, mWA, and
mWAs. We can conclude that mWAs and mAR are the best policies, whereas mWR per-
forms worst on Branin’s function.

Considering Rosenbrock’s function, the situation is a little bit more complicated: mAR
performs better than mQG, mR, mWA, and mWR; mEG outperforms mR, mWAs per-
forms better than mWR. Summarizing, we can conclude that mAR is a reasonable choice
for Rosenbrock’s function.

Finally, we conclude that the alternating recommendation policy mAR is the best policy.

5.3 Non-Ensemble Approaches

Simple EDA reveals that ML is the best meta model in our comparisons on Branin, Me-
xican Hat, Rosenbrock, and Six Hump. Interestingly, all meta models exhibit a similar
performance on Rastringin’s function. Random forest performs surprisingly good on Rast-
rigin. Therefore, ML was chosen as the best candidate for our final comparison.

5.4 Final Comparison

Our final comparison focuses on sEG, mAR, and ML. Kruskal-Wallis rank sum tests
show significant differences on Rastrigin (p-value = 0.03759), Rosenbrock (p-value =
0.0006051), and SixHump (p-value = .006867). On Rastrigin’s function, the multiple
comparison tests produce the following output:

diff lwr upr p adj
mAR-ML -0.5506559 -1.897131 0.7958195 0.5980376
sEG-ML -1.0878970 -2.434372 0.2585785 0.1386036*
sEG-mAR -0.5372410 -1.883716 0.8092344 0.6129415

sEG outperforms ML on Rastrigin, whereas the remaining two comparisons do not reveal
a clear winner. Interestingly, the situation is different on Rosenbrock’s function.

diff lwr upr p adj
mAR-ML -0.006053078 -0.23477911 0.2226730 0.9978378
sEG-ML 0.298016354 0.06929032 0.5267424 0.0068343*
sEG-mAR 0.304069432 0.07534340 0.5327955 0.0056251*

mAR and ML perform equally good, whereas sEG is outperformed by ML and mAR.
Finally, we review results on Six Hump. Here, for sEG and mAR no difference in their
performances could be detected. ML performs better than both ensemble approaches:



diff lwr upr p adj
mAR-ML 0.0043309488 -0.0003971800 0.009059078 0.0800071*
sEG-ML 0.0039823639 -0.0007457649 0.008710493 0.1172052*
sEG-mAR -0.0003485849 -0.0050767138 0.004379544 0.9833436

6 Discussion

Our research focuses on situations, in which ensemble-based approaches outperform clas-
sical approaches. Reflecting the experimental analysis, we have learned that combining
several test problems blurs the significant differences which are visible on subsets. The-
refore, we re-arranged our experimental setup and the corresponding analysis. Significant
differences could be observed on single test functions. As expected, ML performs best
on four of the five test functions. Interestingly, we discovered a different behavior on
Rastrigin’s function. This will give the starting point for further investigations. So, we
did not find simple answers to (Q.1) and (Q.2), but we are able to formulated interesting
follow-up questions.

One further observation is related to the Round-Robin policy: It performs reasonable well
in several settings and deserves further attention in forthcoming experiments.

7 Summary and Outlook
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Figure 2: Box plots comparing final best approaches on Rastrigin (left) and Rosenbrock (right).
These box plots illustrate a simple observation: the selection of the best algorithm (policy) depends
on the test function. There are settings, in which ensemble based approaches are outperformed by
single meta models, and vice versa

There is no general recommendation, that can be derived from results of this study. We
learned, that even on simple test functions, ensemble-based approaches can outperform
classical meta model approaches. However, combining results from several test functi-
ons may blur significant effects. We will consider special functions in our forthcoming
experiments, rather than simply increasing the number of test functions in our portfolio.



The box plots from Fig. 2 nicely illustrate this situation: ML and sEG show a completely
different behavior on Rastrigin and Rosenbrock.

Further topics that will be tackled in our experiments are as follows:

1. How to choose ✏ values for the greedy-search approach?
2. We will increase problem dimensions, and analyze objective functions with cer-

tain features to gain more insight into the working mechanism of ensemble-based
approaches.

3. We will further analyze adaptive region of interest approaches, i.e., we do not use a
fixed region of interest during the optimization.
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