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ABSTRACT
Sequential parameter optimization (SPO) is a heuristic that com-
bines classical and modern statistical techniques to improve the
performance of search algorithms. In this study, SPO is directly
used as an optimization method on different noisy mathematical
test functions. SPO includes a broad variety of meta models, which
can have significant impact on its performance. Additionally, Opti-
mal Computing Budget Allocation (OCBA), which is an enhanced
method for handling the computational budget spent for selecting
new design points, is presented. The OCBA approach can intelli-
gently determine the most efficient replication numbers. Moreover,
we study the of performance of different meta models being inte-
grated in SPO. Our results reveal that the incorporation of OCBA
and the selection of Gaussian process models are highly benefi-
cial. SPO outperformed three different alternative optimization al-
gorithms on a set of five noisy mathematical test functions.

Categories and Subject Descriptors
G.4 [MATHEMATICAL SOFTWARE]: Algorithm design and
analysis

General Terms
Experimentation

Keywords
Surrogate model/fitness approximation, Parameter tuning, Sequen-
tial Parameter Optimization

1. INTRODUCTION
This experimental study presents a comparison of the SPO [1]

toolbox (SPOT) with prominent search algorithms such as the co-
variance matrix adaptation evolution strategy (CMA-ES), Nelder
Mead (NM), and simulated annealing (SANN). The following re-
search questions are investigated: (Q-1) Does OCBA improve SPOT?
(Q-2) How do random forest based meta models perform in com-
parison to Kriging-based meta models? (Q-3) Regarding classical
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optimization algorithms: Does SPOT show a competitive perfor-
mance on standard test problems?

2. SETUP: SPO AND OCBA
Lasarczyk [6] was the first who combined SPOT and OCBA.

OCBA [5] was developed to ensure a high probability of correct
selection (PCS). To maximize PCS, a larger portion of the avail-
able budget is allocated to those designs that are critical to the pro-
cess of identifying the best candidates. OCBA uses sample means
and variances in the budget allocation procedure in order to max-
imize PCS. Consider a number of simulation replications, say T ,
which can be allocated to m competing design points with means
Y 1, Y 2, . . . , Y m and finite variances σ2

1 ,σ
2
2 , . . . ,σ

2
m, respectively.

The Approximate Probability of Correct Selection can be asymptot-
ically maximized when
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where Ni is the number of replications allocated to design i, and
δb,i = Y b − Y i denotes the difference of the i-th and b-th mean
with Y b ≤ mini!=b Y i. As can be seen from (1), the allocated com-
puting budget is proportional to variance and inversely proportional
to the difference from the best design.
Six SPOT meta models (random forest hybridized with Kriging,

particle swarm optimization, and classical optimization algorithms
as well as Kriging models with variants), are used in this study. An
overview introducing these models is provided in [3].
Our main goal when choosing the test functions was to obtain a

preferably small number of these, which cover a variety of differ-
ent difficulty criteria, e.g, the function’s optimum does not lie at the
origin, the function is not symmetric, the function is multi-modal,
or the function has many local minima. To gain some additional
difficulty and stay consistent with SPOT’s original area of applica-
tion, we added fitness-proportional noise to all test functions. This
is the most common case for real-world settings: values and vari-
ability both change together. The number of function evaluations
was chosen as the termination criterion. In order to obtain reli-
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able results, each algorithm is run ten times, with varying seeds.
The final best solution is evaluated on the noise free test function,
i.e., we calculate f (#x) based on the parameters #x determined by
the algorithm. SPOT uses a budget of one hundred target function
evaluations and an initial design size of ten. As our target functions
are noisy, each initial design point is evaluated twice. So the first
twenty of one hundred function evaluations are spend on the initial
design, which is created by the SPOT internal Latin Hypercube
Design function. Each sequential step is then allowed to use two
hundred evaluations of the meta model to detect good new design
points. The best three design points will be used as the new de-
sign and evaluated by the target function. To deal with noise, there
will also be repeated evaluations of the old design, depending on
the chosen sequential step method (with or without OCBA). We
are comparing nine algorithms (six SPOT variants and three opti-
mization algorithms) on five test functions with two different noise
levels. The settings according to the description above can also be
found in [3].
The first step of our analysis relies on EDA. In [3] we use Trel-

lis plots which position the graphical output so as to maximize our
natural pattern-recognition abilities, such as using multiple plots
per page. The second step comprehends statistical tools such as
analysis of variance (ANOVA). A standard approach from statis-
tics reads as follows:
(S-1) Use classical analysis of variance to determine whether there
are differences between the treatment means. Under normality as-
sumptions, use ANOVA for performing one-way location analysis.
Otherwise, Kruskal-Wallis Rank Sum Test or its equivalent for two
groups, the Wilcoxon rank sum test can be used.
(S-2) Next, if the answer from the first step is positive, analyze
which means differ using multiple comparison methods. Under
normality assumptions, Tukey Honest Significant Differences can
be used. Otherwise, the Dunnett-Tukey-Kramer Pairwise Multi-
ple Comparison test is recommended. We are following an ap-
proach for performing the experimental analysis and reporting re-
sults which has been proposed in [4].
We will consider (Q-1) from the introduction first. Wilcoxon

rank sum tests reveal that OCBA does improve SPOT’s perfor-
mance significantly on three of the five test functions. However,
OCBA does not lead to a performance degression in any case. Sim-
ilar results were obtained with a second, increased noise level. The
overall analysis shows that SPOT can be improved by integrating
OCBA. Results from this experimental study are statistically sig-
nificant. However, the reader might consider the small set of ob-
jective functions. Hence, these results can be seen as an indicator.
Taking these preliminaries into consideration, we recommend us-
ing OCBA.
In the following, (Q-2) will be discussed. A Kruskal-Wallis rank

sum test revealed a significant effect of the meta model on per-
formance Y for four of the five test function in our investigation,
but no significant difference for the remaining one, i.e. Rastrigin’s
function. This might be an explanation for the seemingly better per-
formance of the random forest models—it might be only an artefact
caused by noise. Now that we have detected a difference, we are
interested which meta model performs best. To reduce complex-
ity, we decided to split the set of meta models into two subsets:
Kriging-based models and random forest based models. In the fol-
lowing, we will determine the best model from each subset. These
two models will be compared in a second step. The statistical anal-
ysis reveals that an enhanced Kriging based model outperforms the
standard one, whereas there is no difference in the performance of
different random forest based meta models. Therefore, the stan-
dard random forest was chosen for the following comparisons. The

analysis shows that the Kriging based model clearly outperforms
random forest. Results from a recent study could not be transferred
to our test set [2]. The Kriging based approach outperforms ran-
dom forest model approaches in our scenario. However, [2] did not
use OCBA. The combination of Kriging with OCBA might be the
reason for this performance improvement.
To validate (Q-3) a Kruskal-Wallis test indicates that there is a

difference in means for one of the five functions under investiga-
tion. Because this first test is positive, we analyze which means
differ using Dunnett’s Pairwise Multiple Comparison Test. Sim-
ilar results were obtained in the experiments with the remaining
four test functions. None of the classical algorithms outperformed
SPOT. Results from Dunnett’s Pairwise Multiple Comparison Test
show that SPOT outperforms the three classical optimization algo-
rithms from this study.

3. SUMMARY
Summarizing, we can conclude that SPOTwith OCBA and Krig-

ing outperforms the other approaches. SPOT with Kriging shows
a robust behavior (only a few outliers). Results from this study can
be seen as first indicators. Further studies are necessary.
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